SITE CHARACTERIZATION REPORT, Rev. 1

Johns Manville - Riverside Parcels Vienna, Wood County, West Virginia VRP Site Number 11966

Project Number 04-13-0402

Prepared on behalf of:

Structures Resources, Inc.
5187 US Route 60, Suite 13
Huntington, WV 25705
And
City of Vienna
609 29th Street
Vienna, WV 26105

TRIAD ENGINEERING, INC.
10541 Teays Valley Road
Scott Depot, West Virginia 25560

March 19, 2014

TRIAD Listens, Designs & Delivers

March 19, 2014

Mayor Randy Rapp City of Vienna 609 29th Street Vienna, WV 26105

Subject:

Johns Manville - Riverside Parcels

Site Characterization Report WVDEP VRP Site #11966

Vienna, Wood County, West Virginia

Triad Project No. 04-13-0402

Dear Mayor Rapp:

Please find the enclosed *Site Characterization Report (SCR)*, *Rev. 1* for the Former Johns Manville-Riverside Parcels Site, which is located in Vienna, Wood County, West Virginia. This *SCR* has been prepared to comply with the requirements and guidelines of the *Voluntary Remediation and Redevelopment Act* (VRRA); West Virginia Code of State Rules (CSR) 60-03.

If you have any questions or need additional information, please feel free to contact us.

Sincerely,

Triad Engineering, Inc.

Matthew C. Wright, LRS

Project Geologist

Heather A. Metz, LRS

Environmental Services Manager

cheather Metz

encl

TABLE OF CONTENTS

COVER SHEET
TRANSMITTAL LETTER
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
EXECUTIVE SUMMARY

1.0	INTE	RODUCTION	1
2.0	SITE	DESCRIPTION AND HISTORY	1
2.1	Sit	e Description and Location	1
2.2	Re	gional Physiography	2
2.3	Sit	e History	2
2.4	Su	rrounding Land Uses	3
2.5	Pr	evious Site Investigations	3
2.6	Co	nceptual Site Model	3
2	2.6.1	Contaminants of Potential Concern	3
2	2.6.2	Sources	3
2	2.6.3	Migration Pathways	3
2	2.6.4	Receptors	4
3.0	ASS	ESSMENT METHODOLOGY	4
3.1	Sa	mple Locations and Rationale	4
3.2	Su	rface Soil Sampling	5
3.3	Su	bsurface Soil Sampling	5
3.4	Gr	oundwater Sampling	5
3.5	Sa	mple Management, Chain of Custody & Transportation	6
4.0	FINE	DINGS	6
4.1	Su	bsurface Conditions	6
4	.1.1	Soils	6
4	.1.2	Geology	6
4	.1.3	Groundwater	7
4.2	Co	entaminant Concentration and Distribution	7
4	.2.1	Surface Soil	7
4	.2.2	Subsurface Soil	8
4	.2.3	Groundwater	9
4	.2.4	Background Sampling	10

TABLE OF CONTENTS (continued)

5.0	CONCLUSIONS AND RECOMMENDATIONS10
TAB	LES
Table Table Table Table Table Table Table Table	e 1, Monitoring Well Gauging (11/20/2013) e 2, VOC Concentrations in Surface Soil e 3, PAH Concentrations in Surface Soil e 4, RCRA 8 Metals Concentrations in Surface Soil e 5, VOC Concentrations in Subsurface Soil e 6, PAH Concentrations in Subsurface Soil e 7, RCRA 8 Metals Concentrations in Subsurface Soil e 8, VOC Concentrations in Groundwater e 9, PAH Concentrations in Groundwater e 10, RCRA 8 Metals Concentrations in Groundwater e 11, Arsenic Background Concentrations in Surface Soil
FIGU	IRES
	re 1, Site Location Map re 2, Aerial Photograph, USGS, 2010

APPENDICES

Appendix 1, Boring Logs

Appendix 2, Laboratory Reports

Figure 3, Conceptual Site Model Figure 4, Sample Location Map Figure 5, Potentiometric Surface Map Figure 6, Contaminant Distribution Map

EXECUTIVE SUMMARY

The Site is located on 1st Avenue in Vienna, Wood County, West Virginia. The Site encompasses approximately 15.5 acres and is located along the eastern bank of the Ohio River. The Site is primarily grass and asphalt covered and slopes toward the river. An oil well and an associated aboveground storage tank (AST), an antenna and an abandoned power-line tower are located on the property. A former closed water overflow system is located at the southeast corner of the Site. Railroad tracks extend along the eastern boundary of the Site. An asphalt paved parking area is centrally located on the Site with access from 1st Avenue. The area north of the parking lot has been reported to have historically been used to bury waste materials. The wooded area along the northernmost property boundary has historically been used to dump unused off-spec glass beads and miscellaneous debris.

Historically, the property has been associated with production of glass products. Throughout the developed history of the Riverside Parcels, the parcels were used in support of manufacturing facilities which were located east of 1st Avenue. A 2006 Phase I ESA, prepared by Burgess & Niple, Inc. indicated that glass manufacturing related items had been buried in a company landfill on the Riverside Parcels. This landfill was reported to be located beneath a portion of the parking lot and the field north of the parking lot.

Based upon logs of environmental borings, it appears that the majority of the property is underlain by fill material consisting of clay and sandy clay with layers of fiberglass, glass and brick. The fill material ranges from approximately four to 16 feet thick. Native soil was present in the southwestern quarter of the Site and predominantly consists of clay and sandy clay. The maximum explored depth during this investigation was approximately 20 feet below ground surface (bgs).

During the course of the investigation, Triad Engineering, Inc. (Triad) sampled surface and subsurface soils and groundwater. Samples from each of these media were analyzed for volatile organic compounds (VOC), polynuclear aromatic hydrocarbons (PAH) and RCRA 8 metals.

Laboratory analytical results indicate that no detected VOC concentrations exceeded

residential or industrial de minimis levels in surface soils; however, methylene chloride was detected at a concentration exceeding the migration to groundwater level at one sample location. Benzo(a)anthracene was detected at concentrations exceeding the residential de minimis and migration to groundwater values in soil collected from five surface soil sample locations. Benzo(a)pyrene was detected at concentrations exceeding the residential de minimis and migration to groundwater values in soil collected from 18 surface soil sample locations. Benzo(b)fluoranthene was detected at concentrations exceeding the residential de minimis values in soil collected from eight sample locations. Dibenzo(a,h)anthracene was detected at a concentration exceeding the residential de minimis value in soil collected from ten surface soil sample locations. Indeno(1,2,3-cd)pyrene was detected at a concentration exceeding the residential de minimis value in soil collected from two surface soil sample Naphthalene was detected at a concentration exceeding the migration to locations. groundwater value in surface soil from four sample locations. Arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater value in surface soil collected from each sample location. Additionally, arsenic was detected at concentrations exceeding the industrial de minimis in surface soil samples collected from five locations. Selenium was detected at a concentration exceeding the residential de minimis value in surface soil collected from one sample location.

Laboratory analytical results indicate that no detected VOC concentrations in subsurface soil exceeded residential or industrial de minimis levels. Methylene chloride was detected at a concentration exceeding the migration to groundwater value in soil collected from one sample location and 1,2-Dichloroethene was detected at concentrations exceeding the migration to groundwater value in soil collected from two sample locations. No other analyte exceeded the migration to groundwater values in subsurface soil samples. However, the reporting limit exceeded the migration to groundwater value for 11 VOC analytes. Benzo(a)pyrene was detected at concentrations exceeding the residential de minimis values in soil collected from three subsurface soil sample locations. Naphthalene was detected at a concentration exceeding the migration to groundwater value in subsurface soil collected No additional detected PAH concentrations exceeded from two sample locations. residential, industrial or migration to groundwater de minimis levels in subsurface soil. However, the reporting limit exceeded the migration to groundwater value for naphthalene for one subsurface soil sample. Arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater values in subsurface soil collected from

each sample location. Arsenic was also detected at a concentration exceeding the industrial de minimis value in subsurface soil collected from one sample location. Selenium was detected at a concentration exceeding the migration to groundwater value in subsurface soil collected from one sample location. No additional detected RCRA 8 metal concentrations exceeded residential, industrial or migration to groundwater de minimis levels in subsurface soil.

Laboratory analytical results indicate that no detected VOC or PAH concentrations exceeded groundwater de minimis levels. Arsenic was detected at a concentration exceeding the groundwater de minimis value at one sample location.

1.0 INTRODUCTION

Triad Engineering, Inc. (Triad) has prepared this *Site Characterization Report (SCR)* on behalf of Structures Resources, Inc. and the City of Vienna to perform site characterization of the Johns Manville - Riverside Parcels (the "Site"). This report was prepared as per the requirements and guidelines of the *Voluntary Remediation and Redevelopment Act* (VRRA); West Virginia Code of State Rules (CSR) 60-03. The West Virginia Department of Environmental Protection (WVDEP), Division of Land Restoration, Office of Environmental Remediation (OER) accepted the Site into the VRRA program on November 4, 2011, and issued site identification number 11966.

The selection of sample locations, analyses, and media were performed per the Sampling and Analysis Plan (SAP) and based on the results of previous investigations, historic conditions, current and future land-use, historic contaminants of potential concern (COPC), and identification of potential contaminant exposure pathways that could be associated with human health or ecological risk. The SAP was verbally approved by WVDEP Project Manager, David Hight; however, written approval could not be given because the work was not being completed on behalf of Structures Resources, Inc.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Description and Location

The Site is located west of 1st Avenue, between 28th Street and 32nd Street, in Vienna, Wood County, West Virginia. The Site includes parcels 29, 30, 31, 32 and 33 identified on Parkersburg District 4, Tax Map 145. The location of the Site is depicted on the attached **Figure 1**, *Site Location Map* on the *Parkesburg, W.Va*. United States Geological Survey (USGS) 7.5 minute topographic quadrangle map.

The Site encompasses approximately 15.5 acres and is located along the eastern bank of the Ohio River. The Site is primarily grass and asphalt covered and slopes toward the river. An oil well, operated by Dils Oil and Gas, is located approximately 350 feet north of the southernmost property boundary and approximately 80 feet east of the river. An aboveground storage tank (AST) associated with the oil well is centrally located along the southernmost property boundary. This AST is surrounded by an earthen secondary containment berm. An antenna is located between the oil well and the AST. A former

closed water overflow system is located at the southeast corner of the property. This unit consisted of two AST, a lined aboveground basin and a pump house. Waste water was recycled within the unit and reused as process water for production. Railroad tracks extend along the eastern boundary of the Site. An asphalt paved parking area is centrally located on the Site with access from 1st Avenue. An abandoned powerline transmission tower is located adjacent to the northeast corner of the parking area. The area north of the parking lot has been reported to have historically been used to bury waste materials. The wooded area along the northernmost property boundary has historically been used to dump unused off-spec glass beads and miscellaneous debris. A surface water drainage ditch extends along the northernmost property boundary. The Site boundary and features can be seen on Figure 2, *Aerial Photograph*.

2.2 Regional Physiography

The Site is located within the Appalachian Plateau physiographic province, which is characterized by relatively flat sedimentary formations of the Permian and Pennsylvanian ages. Based on the U.S. Department of Agriculture, Soil Conservation Service (SCS), the Site is listed primarily as Made land, consisting of fill material with no true soil definition. Huntington fine sandy loam and Melvin silt loam soils are present along the northern property boundary. The soils of the site are immediately underlain by Quaternary Alluvium.

The Site lies along the bank of the Ohio River at an elevation of approximately 600 feet above mean sea level (msl). The local topographic vertical relief is approximately 200 feet.

2.3 Site History

Historically, the property has been associated with production of glass products. Throughout the developed history of the Riverside Parcels, the parcels were used in support of manufacturing facilities which were located east of 1st Avenue. In 1908, the Meyercord-Carter Co. began production of "vitrolite" glass at the manufacturing facility. It became a Johns Manville plant in 1952. Johns Manville primarily used the facility to manufacture building insulation. A 2006 Phase I Environmental Site Assessment (ESA), prepared by Burgess & Niple, Inc. indicated that glass manufacturing related items had been buried in a company landfill on the Riverside Parcels. This landfill was reported to be located in the field north of the parking area.

2.4 Surrounding Land Uses

The Site is located in an area of mixed residential, commercial and industrial land uses. The surrounding land uses are shown on the attached **Figure 2**, **Aerial Photograph**. The immediately adjoining and adjacent land-uses are as follows:

North - The Site is bound to the immediate north by Jimmy Harper Construction, Inc.

South – The Site is bound to the immediate south by residential structures and a golf course.

East – The Site is bound to the immediate east by 1st Avenue. Further east is the former manufacturing area of the Johns Manville facility.

West - The Site is bound to the immediate west by the Ohio River.

2.5 Previous Site Investigations

In March 2006, a Phase I ESA was prepared for the Johns Manville facility by Burgess & Niple, Inc. The assessment was limited to a site visit and historical document review. No environmental samples were collected.

2.6 Conceptual Site Model

A conceptual site model was developed to evaluate COPC and how they might affect human receptors in the vicinity of the Site. This is shown on **Figure 3**, **Conceptual Site Model**.

2.6.1 Contaminants of Potential Concern

COPC at the Site include VOC, PAH, and RCRA 8 Metals.

2.6.2 Sources

The potential source for VOC and PAH contamination is from the equipment used for production, storage, and distribution of crude oil related liquids. Additionally, lubricating oils from process machinery may have been dumped into the burial area. The potential source for metals contamination is waste and unused glass stock materials and associated building materials.

2.6.3 Migration Pathways

Potential migration pathways include absorption and ingestion.

2.6.4 Receptors

Potential human health exposures could include children accessing the proposed athletic fields, on-site workers, construction workers (including underground utility workers), visitors and trespassers.

Groundwater in the area is not used as a source for domestic supply, limiting the potential of ingestion and dermal contact.

Potential ecological receptors include the Ohio River and the wildlife that inhabit the Ohio River.

3.0 ASSESSMENT METHODOLOGY

In September 2013, a Sampling and Analysis Plan (SAP) was submitted to the WVDEP for site characterization activities to be performed at the Site. David Hight, the WVDEP project manager, requested VOC be added to the analytical parameters, and additional soil and groundwater sampling locations. Following the presentation of the analytical results from the November 2013 sampling event, the Vienna City Council elected to collect additional soil samples from the southern half of the Site. Sampling procedures, laboratory analysis, decontamination and investigation derived waste (IDW) management were performed in accordance with the SAP.

3.1 Sample Locations and Rationale

Investigations at the Site included sampling surface soil, subsurface soil, and groundwater. Sampling locations were selected to provide a comprehensive screening of areas most likely to have been impacted by former Site activities. Sampling locations included the following:

- Surface and subsurface soil samples were collected in the area of the suspected landfill area utilizing an evenly spaced grid.
- Surface and subsurface soil samples were collected along the length of the wooded dumping area.
- Surface and subsurface soil samples were collected adjacent to the oil production and storage areas.
- Surface and subsurface soil samples were collected within the former parking areas.

- Surface and subsurface soil samples were collected adjacent to the Closed Water Overflow Unit.
- Surface soil samples were collected near the southwestern corner of the property as background samples for arsenic.
- Groundwater samples were collected from temporary monitoring wells installed down-gradient of the oil production and storage areas; the landfill; and dumping area.

Sampling locations are depicted on Figure 4, Sample Location Map.

3.2 Surface Soil Sampling

Triad collected 32 surface soil samples (SS-1 through SS-22 and BG-1 through BG-10) using direct-push technology (DPT). Additionally, three field duplicate samples (SS-1FD, SS-17FD and BG-1FD) were collected. Surface soil samples SS-1 through SS-22 and associated field duplicate samples were analyzed for VOC by USEPA Method 8260B, PAH by USEPA Method 8270M, and RCRA 8 Metals by USEPA Method 6020A/7471. Background samples BG-1 through BG-10 and an associated field duplicate sample were analyzed for arsenic by USEPA Method 6020A.

3.3 Subsurface Soil Sampling

Triad collected 21 subsurface soil samples (SB-1 through SB-11 and SB-13 through SB-22) using DPT. Additionally, two field duplicate sample (SB-1FD and SB-17FD) were collected. One sample (SB-12) proposed in the SAP was eliminated due to refusal on concrete. Subsurface samples were analyzed for VOC by USEPA Method 8260B, PAH by USEPA Method 8270M, and RCRA 8 Metals by USEPA Method 6020A/7471.

3.4 Groundwater Sampling

Triad installed four temporary groundwater monitoring wells. The temporary monitoring wells were constructed of one-inch PVC slotted well screen and casing. A sand-pack and bentonite seal were installed around the well pipe; however, no permanent well cover was installed. The monitoring wells were developed using surge and purge development techniques. Groundwater samples were collected from each monitoring well using hand bailing sampling techniques. In addition, one field duplicate was collected. Groundwater

samples were analyzed for VOC by USEPA Method 8260B, PAH by USEPA Method 8270 SIM, and RCRA 8 Metals by USEPA Method 6020A/7471.

3.5 Sample Management, Chain of Custody & Transportation

Each sample container was labeled immediately following sample collection, wrapped in bubble wrap, sealed in a zip-lock® storage bag and placed in an iced sample cooler until they were packed for shipment to the laboratory. Each sample was recorded on a Chain of Custody Record documenting the date, time, sample identification, matrix, preservative and required analysis.

Samples were packed in sample coolers in a manner to maintain a temperature below 4 degrees Celsius and to prevent breakage during shipping. A custody seal was placed on each cooler and samples were delivered by courier to ALS Environmental, Inc. in South Charleston, West Virginia.

4.0 FINDINGS

4.1 Subsurface Conditions

Subsurface conditions described below are based on data collected during this investigation. Logs of borings advanced during these investigations are included in **Appendix 1, Boring Logs**.

4.1.1 Soils

Based upon logs of environmental borings, it appears that the majority of the property is underlain by fill material consisting of clay and sandy clay with layers of fiberglass, glass and brick. The fill material ranges from approximately four to 16 feet thick. Native soil was present in the southwestern quarter of the Site and predominantly consists of clay and sandy clay. The maximum explored depth during this investigation was approximately 20 feet below ground surface (bgs).

4.1.2 Geology

Weathered sandstone and shale was encountered at depths ranging from 13 to 19 feet bgs during our investigation. Bedrock underlying the Site consists of Pennsylvanian Age rock of the Dunkard Series. In general, the Dunkard Series is

comprised mainly of cyclic beds of sandstone, siltstone, red to grey shale, and coal.

4.1.3 Groundwater

During our investigation, groundwater was measured at depths ranging from approximately 10 to 14 feet bgs. Groundwater flow appears to be to the west and northwest toward the Ohio River. Monitoring well gauging data is summarized in **Table 1**, *Monitoring Well Gauging (11/21/2013)*. Groundwater flow is illustrated in **Figure 5**, *Potentiometric Surface Map*.

4.2 Contaminant Concentration and Distribution

To evaluate the concentration and distribution of COPC in surface soil, subsurface soil, and groundwater, laboratory analytical data were compared to current WV Voluntary Remediation Program (VRP) de minimis values for residential soil, industrial soil, migration to groundwater and groundwater (Table 60-3B.) Laboratory analytical reports are included in **Appendix 2**, *Laboratory Reports*.

4.2.1 Surface Soil

Laboratory analytical results indicate that no detected VOC concentrations exceeded residential or industrial de minimis levels. Methylene chloride was detected at concentrations exceeding the migration to groundwater values in soil collected from one sample location (SS-22). No other analyte exceeded the migration to groundwater values in surface soil samples. However, the reporting limit exceeded the migration to groundwater value for 11 VOC analytes.

Laboratory analytical results indicate that Benzo(a)anthracene was detected at concentrations exceeding the residential de minimis and migration to groundwater values in soil collected from five sample locations (SS-3, SS-10, SS-12, SS-14 and SS-15). Benzo(a)pyrene was detected at concentrations exceeding the residential de minimis values in soil collected from 17 sample locations (SS-1, SS-1FD, SS-2, SS-3, SS-4, SS-6, SS-9, SS-10, SS-12, SS-13, SS-14, SS-15, SS-16, SS-17, SS-20, SS-21 and SS-22). Benzo(b)fluoranthene was detected at concentrations exceeding the residential de minimis values in soil collected from eight sample locations (SS-2, SS-3, SS-4, SS-6, SS-10, SS-12, SS-14 and SS-15). Dibenzo(a,h)anthracene was

detected at concentrations exceeding the residential de minimis value in soil collected from 10 sample locations (SS-1FD, SS-2, SS-3, SS-4, SS-6, SS-10, SS-12, SS-14, SS-15, SS-17 and SS-17FD). Indeno(1,2,3-cd)pyrene was detected at concentrations exceeding the residential de minimis value in soil collected from two sample locations (SS-3 and SS-12). Naphthalene was detected at a concentration exceeding the migration to groundwater value in soil collected from four sample locations (SS-2 SS-10, SS-14 and SS-15). No additional detected PAH concentrations exceeded residential, industrial or migration to groundwater de minimis levels. However, the reporting limit exceeded the migration to groundwater value for naphthalene for six samples.

Laboratory analytical results indicate that arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater value in soil collected from each sample location. Arsenic was also detected at a concentration exceeding the industrial de minimis value in soil collected from four sample locations (SS-10, SS-13, SS-17, SS-17FD and SS-22). Selenium was detected at a concentration exceeding the migration to groundwater value in soil collected from one sample location (SS-17). No additional detected RCRA 8 metal concentrations exceeded residential, industrial or migration to groundwater de minimis levels.

Surface soil analytical results are summarized in Table 2, VOC Concentrations in Surface Soil; Table 3, PAH Concentrations in Surface Soil; and Table 4, RCRA 8 Metals concentrations in Surface Soil. Surface soil analytical results exceeding residential de minimis levels are illustrated on Figure 6, Contaminant Distribution Map.

4.2.2 Subsurface Soil

Laboratory analytical results indicate that no detected VOC concentrations exceeded residential or industrial de minimis levels. Methylene chloride was detected at a concentration exceeding the migration to groundwater value in soil collected from one sample location (SB-18) and 1,2-Dichloroethene was detected at concentrations exceeding the migration to groundwater value in soil collected from one sample location (SB-17 and SB-17FD). No other analyte exceeded the migration to

groundwater values in subsurface soil samples. However, the reporting limit exceeded the migration to groundwater value for 11 VOC analytes.

Laboratory analytical results indicate that benzo(a)pyrene was detected at concentrations exceeding the residential de minimis values in soil collected from three sample locations (SB-3, SB-16, and SB-22). Naphthalene was detected at a concentration exceeding the migration to groundwater value in soil collected from two sample locations (SB-3 and SB-22). No additional detected PAH concentrations exceeded residential, industrial or migration to groundwater de minimis levels. However, the reporting limit exceeded the migration to groundwater value for naphthalene for one sample.

Laboratory analytical results indicate that arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater values in soil collected from each sample location. Arsenic was also detected at a concentration exceeding the industrial de minimis value in soil collected from one sample location (SS-22). Selenium was detected at a concentration exceeding the migration to groundwater value in soil collected from one sample location (SS-22). No additional detected RCRA 8 metal concentrations exceeded residential, industrial or migration to groundwater de minimis levels.

Subsurface soil analytical results are summarized in Table 5, VOC Concentrations in Subsurface Soil; Table 6, PAH concentrations in Subsurface Soil and Table 7, RCRA 8 Metal Concentrations in Subsurface Soil. Subsurface soil analytical results exceeding residential de minimis levels are illustrated on Figure 6, Contaminant Distribution Map.

4.2.3 Groundwater

Laboratory analytical results indicate that no detected VOC or PAH concentrations exceeded groundwater de minimis levels. However, the reporting limit exceeded the groundwater de minimis value for three VOC analytes and one PAH analyte. Laboratory analytical results indicate that arsenic was detected at a concentration exceeding the groundwater de minimis value at one sample location (TMW-3). No additional detected RCRA 8 metal concentrations exceeded the groundwater de

minimis value. However, the reporting limit exceeded the groundwater de minimis value for one analyte.

Groundwater analytical results are summarized in Table 8, VOC Concentrations in Groundwater; Table 9, PAH concentrations in Groundwater and Table 10, RCRA 8 Metals Concentrations in Groundwater. Groundwater analytical results exceeding de minimis levels are illustrated on Figure 6, Contaminant Distribution Map.

4.2.4 Background Sampling

Laboratory analytical results indicate that arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater value in soil collected from each sample location. This data will be used by the risk assessor during the preparation of the Human Health and Ecological Risk Assessment.

Background analytical results are summarized in **Table 11**, *Arsenic Background Concentrations in Surface Soil*.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Historically, the Riverside Parcels have been used in support of glass products manufacturing facilities which were located east of 1st Avenue. A 2006 Phase I ESA indicated that glass manufacturing related items had been buried in a company landfill on the Riverside Parcels. This landfill was reported to be located beneath a portion of the parking lot and the field north of the parking lot. During our investigation, fill material consisting of clay and sandy clay with layers of fiberglass, glass and brick were identified in borings advanced throughout the majority of the Site. The fill material ranges from approximately four to 16 feet thick. Native soil at the Site predominantly consists of clay and sandy clay and was encountered primarily at the southwest quarter of the property. The maximum explored depth during this investigation was approximately 20 feet bgs.

During the course of the investigation, Triad advanced 22 soil borings and installed four temporary monitoring wells and collected surface and subsurface soils and groundwater samples for laboratory analysis. Samples from each of these media were analyzed for

VOC, PAH and RCRA 8 metals. Additionally, 10 surface soil samples were analyzed as background samples for arsenic.

Laboratory analytical results indicate that no detected VOC concentrations exceeded residential or industrial de minimis levels in surface soils; however, methylene chloride was detected at a concentration exceeding the migration to groundwater level at one sample location. Benzo(a)anthracene was detected at concentrations exceeding the residential de minimis and migration to groundwater values in soil collected from five surface soil sample locations. Benzo(a)pyrene was detected at concentrations exceeding the residential de minimis and migration to groundwater values in soil collected from 17 surface soil sample locations. Benzo(b)fluoranthene was detected at concentrations exceeding the residential de minimis values in soil collected from eight sample locations. Dibenzo(a,h)anthracene was detected at a concentration exceeding the residential de minimis value in soil collected from ten surface soil sample locations. Indeno(1,2,3-cd)pyrene was detected at a concentration exceeding the residential de minimis value in soil collected from two surface soil sample locations. Naphthalene was detected at a concentration exceeding the migration to groundwater value in surface soil from four sample locations. Arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater value in surface soil collected from each sample location. Additionally, arsenic was detected at concentrations exceeding the industrial de minimis in surface soil samples collected from four sample locations. Selenium was detected at a concentration exceeding the residential de minimis value in surface soil collected from one sample location.

Laboratory analytical results indicate that no detected VOC concentrations in subsurface soil exceeded residential or industrial de minimis levels. Methylene chloride was detected at a concentration exceeding the migration to groundwater value in soil collected from one sample location and 1,2-Dichloroethene was detected at concentrations exceeding the migration to groundwater value in soil collected from two sample locations. No other analyte exceeded the migration to groundwater values in subsurface soil samples. However, the reporting limit exceeded the migration to groundwater value for 11 VOC analytes. Benzo(a)pyrene was detected at concentrations exceeding the residential de minimis values in soil collected from three subsurface soil sample locations. Naphthalene was detected at a concentration exceeding the migration to groundwater value in subsurface soil collected from two sample locations. No additional detected PAH concentrations exceeded

residential, industrial or migration to groundwater de minimis levels in subsurface soil. However, the reporting limit exceeded the migration to groundwater value for naphthalene for one subsurface soil sample.

Arsenic was detected at a concentration exceeding the residential de minimis and migration to groundwater values in subsurface soil collected from each sample location. Arsenic was also detected at a concentration exceeding the industrial de minimis value in subsurface soil collected from one sample location. Selenium was detected at a concentration exceeding the migration to groundwater value in subsurface soil collected from one sample location. No additional detected RCRA 8 metal concentrations exceeded residential, industrial or migration to groundwater de minimis levels in subsurface soil.

Laboratory analytical results indicate that no detected VOC or PAH concentrations exceeded groundwater de minimis levels. However, the reporting limit exceeded the groundwater de minimis value for three VOC analytes and one PAH analyte. Arsenic was detected at a concentration exceeding the groundwater de minimis value at one sample location. No additional detected RCRA 8 metal concentrations exceeded the groundwater de minimis value; however, the reporting limit exceeded the migration to groundwater value for one sample analyte.

We recommend a Human Health and Ecological Risk Assessment be prepared to determine if remediation of COPC are required.

TABLES

Table 1. Monitoring Well Gauging (11/21/2013) Johns Manville - Riverside Parcels

Vienna, WV VRP# 11966

Location	Date	Ground Elevation	TOC Elevation	Depth to LNAPL	Depth to Water	Potentiometric Surface Elevation
TMW-1	11/21/2013	603.63	604.88	ΔN	14.17	590.71
TMW-2	11/21/2013	600.11	600.51	ď	12.15	588.36
TMW-3	11/21/2013	600.61	604.11	ΔN	14.12	589.99
TMW-4	11/21/2013	591.98	595.33	NP	10.91	584.42
NIO+O.						

TOC-Top of Casing LNAPL-Light Non-Aqueous Phase Liquids Depth to water measured from TOC. NP- Not Present

Table 2. VOC Concentrations in Surface Soil Johns Manville-Riverside Parcels

99611 # 4AV

11.0	I dN	11.0	ΙD	11.0	I dN	11.0	I dN	21.0	ND	11.0	ND	11.0	I dN	1.0	I dN	1.0	I dN	500	100	100	mg/Kg-dry	Xylenes, Total
350.0	ND	360.0	QN	980.0	dN	980.0	UD	650.0	ND	360.0	QN.	980.0	ND	0.035	QN.	6.035	ND	4069810.0	868085.15		mg/Kg-dry	Vinyl chloride
360.0	ND	360.0	QN.	960.0	dN	960.0	ND	950.0	ND	360.0	QN.	980.0	ND	0.035	ΔN	360.0	ND	980.0	12	84.0	mg/Kg-dry	Trichloroethene
360.0	ND	360.0	I dN	980.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	650.0	ND	360.0	ND				mg/Kg-dry	frans-1,3-Dichloropropene
360.0	ND	360.0	QN.	980.0	QN.	980.0	I I I	950.0	ND	360.0	ΔN	980.0	ND	960.0	ND	360.0	ND	69.0	017	160	mg/Kg-dry	frans-1,2-Dichloroethene
360.0	dN	360.0	QN	980.0	dN	980.0	I QN	650.0	ND	350.0	ΔN	980.0	ND	980.0	ND	6.035	ND	カレ	390	390	mg/Kg-dry	Toluene
360.0	ND	350.0	ΔN	980.0	ΔN	980.0	ND	650.0	ND	360.0	ΠD	.980.0	ND	360.0	ND	350.0	ND	940.0	36	99.0	mg/Kg-dry	Tetrachloroethene
360.0	QN	360.0	ΔN	980.0	QN	980.0	ND	650.0	ND	360.0	ΠD	980.0	ND	350.0	ND	980.0	ND	2.2	340	340	mg/Kg-dry	Styrene
360.0	ΔN	380.0	ND	980.0	ΔN	980.0	ND	650.0	ND	980.0	ND	980.0	ND	350.0	ND	6.035	ND				mg/Kg-dry	o-Xylene
980.0	ND	350.0	ΠD	980.0	ΔN	980.0	ND	650.0	ND	350.0	ND	980.0	ND	980.0	ND	0.035	ND	0.025	089	11	mg/Kg-dry	Methylene chloride
170.0	ND	170.0	ND	270.0	ND	270.0	ND	670.0	ND	70.0	ND	270.0	ND	690.0	L 8E0.0	690.0	ND				mg/Kg-dry	m,p-Xylene
350.0	ND	980.0	ΠD	980.0	ND	980.0	ND	650.0	ND	960.0	ND	980.0	ND	360.0	ND	360.0	ND	91	061	G. G	mg/Kg-dry	Ethylbenzene
0.035	ND	350.0	ΠD	980.0	ND	980.0	ND	650.0	ND	980.0	ND	960.0	ND	360.0	ND	350.0	ND		- 4.4		mg/Kg-dry	Dibromochloromethane
360.0	ND	350.0	ND	980.0	ND	980.0	ND	650.0	ND	960.0	ND	980.0	ND	360.0	ND	350.0	ND				mg/Kg-dry	cis-1,3-Dichloropropene
360.0	ND	980.0	ND	980.0	ND	960.0	ND	650.0	ND	6.035	ND	980.0	ND	350.0	ND	650.0	ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
0.12	ND	0.12	ND	0.12	ND	0.12	ND	61.0	ND	0.12	ND	0.12	ND	21.0	ND	21.0	ND	86.0	910	120	mg/Kg-dry	Chloromethane
980.0	ND	350.0	ND	960.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	650.0	ND	60.03	ND	1100.0	91	6.0	mg/Kg-dry	Chloroform
21.0	ND	0.12	ND	0.12	ΠN	21.0	ND	61.0	ND	21.0	ND	21.0	ND	21.0	ND	0.12	ND	120	1900	1900	mg/Kg-dry	Chloroethane
980.0	ND	980.0	ND	960.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	960.0	ND	0.035	ND	1.1	340	300	mg/Kg-dry	Chlorobenzene
360.0	ND	650.0	ND	960.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	360.0	ND	0.035	ND	650.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
360.0	ND	960.0	ND	980.0	ND	980.0	ND	650.0	ND	360.0	ND	9£0.0	ND	6.035	ND	6.035	ND	1.9	01/9	079	mg/Kg-dry	Carbon disulfide
680.0	ND	880.0	ND	60.0	ND	60.0	ND	860.0	ND	880.0	ND	160.0	ND	980.0	ND	980.0	ND	440.0	33	9.7	mg/Kg-dry	Bromomethane
350.0	ND	350.0	ND	980.0	ND	960.0	ND	650.0	ND	6.035	ND	960.0	ND	360.0	ND	360.0	ND	0.045	3100	19	mg/Kg-dry	Bromoform
350.0	ND	0.035	ΠN	980.0	ND	980.0	ND	0.039	ND	0.035	ND	980.0	ND	650.0	ND	0.035	ND	49000.0	カレ	82.0	mg/Kg-dry	Bromodichloromethane
350.0	ND	360.0	ND	960.0	ND	980.0	ND	650.0	ND	6.035	ND	980.0	ND	360.0	ND	60.03	ND	130.0	89	1.1	mg/Kg-dry	Benzene
21.0	ND	21.0	ΠD	21.0	ND	21.0	ND	61.0	ND	0.12	ND	21.0	ND	21.0	ND	0.12	ND	68	200000	00019	mg/Kg-dry	Acetone
960.0	ND	360.0	ND	980.0	ND	980.0	ND	650.0	ND	0.035	ND	980.0	ND	360.0	ND	360.0	ND	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
360.0	ND	360.0	ND	980.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	360.0	ND	960.0	ND				mg/Kg-dry	2-Hexanone
0.24	ND	0.24	ND	0.24	ND	42.0	ND	92.0	ND	62.0	ND	42.0	ND	62.0	ND	62.0	ND	30	00074	28000	mg/Kg-dry	Z-Butanone
170.0	ND	170.0	ND	270.0	ND	270.0	ND	670.0	ND	70.0	ND	270.0	ND	690'0	ND	690.0	ND				mg/Kg-dry	1,3-Dichloropropene
360.0	ND	0.035	ND	980.0	ND	980.0	ND	650.0	ND	360.0	ND	980.0	ND	360.0	ND	980.0	ND	650.0	L Þ	26.0	mg/Kg-dry	1,2-Dichloropropane
170.0	ND	170.0	ND	270.0	ND	270.0	ND	670.0	ND	70.0	ND	270.0	ND	690.0	ND	690'0	ND				mg/Kg-dry	1,2-Dichloroethene
960.0	ND	360.0	ND	980.0	ND	980.0	ND	650.0	ND	60.0	ND	960.0	ND	350.0	ND	360.0	ND	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
360.0	ND	360.0	ND	980.0	ND	960.0	ND	650.0	ND	6.035	ND	980.0	ND	360.0	ND	960.0	ND	90.0	098	250	mg/Kg-dry	1,1-Dichloroethene
360.0	ND	350.0	ND	980.0	ND	980.0	ND	0.039	ND	360.0	ND	980.0	ND	360.0	ND	60.03	ND	410.0	071	4.8	mg/Kg-dry	1,1-Dichloroethane
360.0	ND	660.0	ND	980.0	ND	980.0	ND	0.039	ND	360.0	ND	980.0	ND	650.0	ND	0.035	ND	ZE0.0	Z 9	1.1	mg/Kg-dry	1,1,2-Trichloroethane
350.0	ND	360.0	ND	960.0	ND	9£0.0	ND	650.0	ND	60.03	ND	980.0	ND	360.0	ND	360.0	ND	6,00053	31	78.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
360.0	ND	360.0	ND	980.0	ND	980.0	ND	650.0	ND	350.0	ND	9£0.0	ND	350.0	ND	60.0	ND	4.1	420	420	mg/Kg-dry	1,1,1-Trichloroethane
	Result	ל אר			Result		Result Q		Result		Result		Result Q		Result		Result		See A See A	Company A		
(.2-	0)	('S-	-0)		-0)		Z-0)	('S.			z-o)		Z-0)		Z-0)		Z-0)	Groundwater	DeMinimis	DeMinimis	StinU	Analyte
8-8	S	Z-9	SS	9-9	SS	9	-SS	7-9	SS	5.	SS	2	SS	FD	I-SS	1-	SS	Migration to	Industrial	Residential	2,0010	
							s6	g Depth b	Inple ID	Sai												

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Residential De Minimis value.

Result exceeds the Industrial De Minimis value.
Result exceeds the Migration to Groundwater value.

Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessment.

Johns Manville-Riverside Parcels Table 2. VOC Concentrations in Surface Soil

99611 # 4AV

11.0 L 180.0	21.0	ND	61.0	ND	1.0	L £60.0	1.0	ND	1.0	ND	1.0	ND	11.0		ND	200	100	100	mg/Kg-dry	Xylenes, Total
9E0.0 QN	140.0	ND	440.0	ND	460.0	ND	980.0	ND	460.0	ND	460.0	ND	750.0		ND	4069810.0	868086.12		mg/Kg-dry	Vinyl chloride
9E0'0	140.0	ND	440.0	ND	460.0	ND	0.035	ND	460.0	ND	460.0	ND	750.0		ND	960.0	21	84.0	mg/Kg-dry	Trichloroethene
ND 0.035	140.0	ND	440.0	ΔN	460.0	ΙND	350.0	ND	460.0	ND	460.0	ND	750.0		ND				mg/Kg-dry	frans-1,3-Dichloropropene
QE0'0 QN	140.0	ND	440.0	ND	460.0	ND	960.0	ND	460.0	ND	450.0	ND	750.0		ND	69.0	017	160	mg/Kg-dry	trans-1,2-Dichloroethene
350.0 490.0	140.0	ΠD	440.0	ND	₽£0.0	350.0	960.0	ND	460.0	ND	460.0	ND	750.0		ND	カレ	360	360	mg/Kg-dry	Toluene
ND 0.035	140.0	ND	440.0	ND	460.0	ND	950.0	ND	460.0	ND	450.0	ND	750.0		ND	940.0	98	99.0	mg/Kg-dry	Tetrachloroethene
0.035 dN	140.0	ND	440.0	ΔN	460.0	ND	980.0	ND	460.0	ND	460.0	ND	750.0		ND	2.2	340	340	mg/Kg-dry	Styrene
ND 0.035	140.0	ND	440.0	ND	460.0	0.026	980.0	ND	460.0	ND	460.0	ND	750.0	1 9	ND				mg/Kg-dry	o-Xylene
9E0'0	140.0	ND	440.0	ΠD	460.0	ND	350.0	ND	460.0	ND	450.0	ND	750.0		ND	920.0	089	11	mg/Kg-dry	Methylene chloride
70.0 L S00.0	180.0	ND	780.0	ΔN	890.0	890.0	70.0	ND	790.0	ND	790.0	ND	470.0		ND				mg/Kg-dry	m,p-Xylene
ND 0.035	140.0	ND	440.0	ND	460.0	ND	980.0	ND	460.0	ND	460.0	ND	750.0		ND	91	190	6.8	mg/Kg-dry	Ethylbenzene
ND 0.035	140.0	ΠD	440.0	αN	460.0	ND	960.0	ND	460.0	ND	460.0	ND	750.0		ND			T	mg/Kg-dry	Dibromochloromethane
ND 0.035	140.0	ΠD	440.0	ΙD	460.0	ND	960.0	ND	460.0	ND	450.0	ΠD	750.0		ND				mg/Kg-dry	cis-1,3-Dichloropropene
ND 0.035	140.0	ND	440.0	ΠD	460.0	ND	960.0	ND	460.0	ND	460.0	ND	750.0		ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
ND 0.12	41.0	ND	31.0	ND	11.0	ND	0.12	ND	11.0	ND	11.0	ND	0.12		ND	86.0	013	120	mg/Kg-dry	Chloromethane
QE0'0 QN	140.0	ND	440.0	ΠD	₽60.0	ΠD	6.035	ND	460.0	ND	₽60.0	ND	750.0		ND	1100.0	91	6.0	mg/Kg-dry	Chloroform
ND 0.12	41.0	ND	31.0	ΔN	11.0	ND	21.0	ND	11.0	ND	11.0	ND	21.0		ND	120	1900	1900	mg/Kg-dry	Chloroethane
ND 0.035	140.0	ND	440.0	ΠD	460.0	ND	0.035	ND	460.0	ND	450.0	ND	750.0		ND	4.1	340	300	mg/Kg-dry	Chlorobenzene
9E0'0 QN	140.0	ND	440.0	ΔN	460.0	ND	350.0	ND	460.0	ND	460.0	ND	750.0		ND	650.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
ND 0.035	140.0	ND	440.0	ND	460.0	ND	960.0	ND	0.034	ND	450.0	ND	750.0		ND	1.8	079	049	mg/Kg-dry	Carbon disulfide
880.0 QN	1.0	ND	11.0	ΠN	380.0	ND	780.0	ND	480.0	ND	480.0	ND	260.0		ND	440.0	33	ð.T	mg/Kg-dry	Bromomethane
9E0'0	140.0	ND	440.0	ND	460.0	ND	350.0	ND	460.0	ND	460.0	ND	750.0		ND	940.0	3100	19	mg/Kg-dry	Bromoform
9E0'0	140.0	ND	440.0	ΠD	460.0	ΠD	0.035	ND	460.0	ND	450.0	ND	750.0		ND	49000.0	٦t	82.0	mg/Kg-dry	Bromodichloromethane
ND 0.035	140.0	ND	440.0	ND	460.0	L 810.0	650.0	ND	0.034	ND	₽60.0	ND	750.0		ND	130.0	89	1,1	mg/Kg-dry	Benzene
ND 0.12	41.0	ND	31.0	ΠD	11.0	ND	0.12	ND	11.0	ND	11.0	ND	0.12		ND	68	200000	00019	mg/Kg-dry	anofac
ND 0.035	140.0	ND	440.0	ND	460.0	ND	350.0	ND	₽£0.0	ND	460.0	ND	750.0		ND	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
ND 0.035	140.0	ND	440.0	ΠD	460.0	ND	360.0	ND	460.0	ND	460.0	ND	750.0		ND			1	mg/Kg-dry	2-Hexanone
ND 0.23	72.0	ND	62.0	ND	62.0	ND	62.0	ND	0.22	ND	0.22	ND	62.0		ND	30	00074	28000	mg/Kg-dry	2-Butanone
70.0 dN	180.0	ND	780.0	ND	890.0	ND	70.0	ND	790.0	ND	790.0	ND	₽70.0		ND			7 To 1	mg/Kg-dry	1,3-Dichloropropene
0.035 dN	140.0	ND	440.0	ND	460.0	ND	360.0	ND	460.0	ND	460.0	ND	750.0		ND	6.033	74	26.0	mg/Kg-dry	1,2-Dichloropropane
70.0 QN	180.0	ND	780.0	ND	890.0	ND	70.0	ND	790.0	ND	790.0	ND	470.0		ND				mg/Kg-dry	1,2-Dichloroethene
9E0'0	140.0	ND	440.0	ΠD	460.0	ND	980.0	ND	460.0	ND	460.0	ND	750.0		ND	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
QE0'0 QN	140.0	ND	440.0	ΠD	460.0	ND	960.0	ND	460.0	ND	460.0	ND	750.0		ND	90.0	098	520	mg/Kg-dry	1,1-Dichloroethene
O:035	140.0	ND	440.0	ND	460.0	ND	350.0	ND	460.0	ND	460.0	ND	750.0		ND	410.0	021	4.8	mg/Kg-dry	1,1-Dichloroethane
ND 0.035	140.0	ND	440.0	ND	460.0	ND	980.0	ND	460.0	ND	460.0	ND	750.0		ND	280.0	78	1.1	mg/Kg-dry	1,1,2-Trichloroethane
ND 0.035	140.0	ND	440.0	ΔN	460.0	ND	980.0	ND	460.0	ND	₽80.0	ΠD	750.0		ND	0,00053	31	75.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
0.035 dN	140.0	ND	440.0	ΔN	480.0	αN	360.0	ND	460.0	ND	₽80.0	ND	750.0		ND	4.1	097	097	mg/Kg-dry	1,1,1-Trichloroethane
Result Q RL		Result		Result Q		Result		Result		Result Q		Result	ВГ	D 3	Resul					
(,z-0)	(,z-0)			z-o)		(-0)	(.z.			2-0)		(-0)		(0-5	-	Groundwater	DeMinimis	DeMinimis	enue	andimus
91-88	91-89			-SS		-SS	-12			-SS		·SS		6-SS		Migration to	Industrial	Residential	stinU	eiylenA
						pepth b														

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assess

Table 2. VOC Concentrations in Surface Soil Johns Manville-Riverside Parcels

99611 # 9AV

1.0	αN	1.0	ND	1.0		ND	1.0		ND	11.0	I an	11	0	L 780.0	960.0		96'0	200	100	100	mg/Kg-dry	Xylenes, Total
\$50.0	QN	350.0	QN	₽£0.0		ND	980.0		ND	980'0	ND	980	0.0	ND	0.032		ND	₽ 069810.0	21,380898		mg/Kg-dry	Vinyl chloride
\$50.0	ND	360.0	ND	450.0		ND	360.0	П	ND	980.0	ND I			ND	280.0		ND	9£0.0	12	84.0	mg/Kg-dry	Trichloroethene
460.0	ΔN	350.0	ΔN	450.0		ND	350.0	\Box	ND	350.0	ND I		0.0	ND	0.032		ND				mg/Kg-dry	frans-1,3-Dichloropropene
460.0	ΔN	350.0	ND	450.0	11	ND	360.0	П	ND	350.0	ND I	980		ND	250.0		ND	69.0	017	160	mg/Kg-dry	frans-1,2-Dichloroethene
460.0	ΔN	350.0	L 610.0	450.0		ND	360.0	П	ND	6.035	ND	_		630.0	260.0		35.0	カレ	360	360	mg/Kg-dry	Toluene
460.0	ND	350.0	ND	460.0	T	ND	360.0	П	ND	980.0	I I	980	0.0	ND	0.032		ND	940.0	36	95.0	mg/Kg-dry	Tetrachloroethene
460.0	ND	350.0	ND	460.0		ND	360.0		ND	6.035	ND	980	0.0	ND	0.032		ND	2.2	340	340	mg/Kg-dry	Styrene
₽£0.0	ND	350.0	U 20.0	460.0		ND	0.035		ND	350.0	ND	980	0.0	0.042	260.0		84.0				mg/Kg-dry	o-Xylene
₽E 0.034	770.0	360.0	L 710.0	460.0		ND	980.0		ND	980.0	ND	980	0.0	ND	260.0		ND	0.025	989	11	mg/Kg-dry	Methylene chloride
790.0	ND	70.0	ND	790.0		ND	690'0	П	ND	70.0	ND	870	0.0	0.045	690.0		74.0				mg/Kg-dry	ənəlyX-q,m
460.0	ND	360.0	ND	460.0		ND	360.0		ND	GE0.0	ΠD	980		ND	260.0	Π	21,0	91	190	6.6	mg/Kg-dry	Ethylbenzene
460.0	ND	350.0	ND	460.0		ND	360.0		ND	360.0	ND	980		ND	0.032		ND				mg/Kg-dry	Dibromochloromethane
450.0	ND	350.0	ND	460.0		ND	360.0		ND	360.0	ND			ND	0.032		ND				mg/Kg-dry	cis-1,3-Dichloropropene
460.0	ND	360.0	ND	460.0		ND	350.0		ND	6.035	ND			ND	260.0		ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
11.0	ND	21.0	ND	11.0		ND	21.0		ND	0.12	ND			ND	11.0		ND	86.0	910	120	mg/Kg-dry	Chloromethane
480.0	ND	350.0	ND	460.0		ND	0.035		ND	360.0	ND	980		ND	260.0		ND	1100.0	91	£.0	mg/Kg-dry	Chloroform
11.0	ND	21.0	ND	11.0		ND	21.0		ND	21.0	ND			ND	11.0		ND	120	0061	1900	mg/Kg-dry	Chloroethane
460.0	ND	360.0	ND	460.0		ND	350.0		ND	6.035	ND			ND	260.0		ND	4.1	340	300	mg/Kg-dry	Chlorobenzene
460.0	ND	360.0	ND	460.0		ND	360.0		ND	980.0	ND	980		ND	\$50.0		ND	650.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
460.0	ND	350.0	ND	460.0	r	620.0	350.0		21.0	0.035	670			ND	260.0	r	820.0	1.9	0†9	079	mg/Kg-dry	Sarbon disulfide
₽80.0	ND	780.0	ND	480.0		ND	780.0		ND	880.0	ND	160		ND	670.0		ND	440.0	33	3.7	mg/Kg-dry	Bromomethane
460.0	ND	360.0	ND	460.0		ND	350.0		ND	650.0	ND			ND	260.0		ND	940.0	3100	19	mg/Kg-dry	Bromoform
460.0	ND	6.035	ND	460.0		ND	350.0		ND	360.0	ND	980		ND	260.0		ND	49000.0	カレ フレ	82.0	mg/Kg-dry	Bromodichloromethane
460.0	ND	0.035	ND	460.0		ND	6.035		ND	350.0	ND	980		ND	260.0		40.0	190.0	89	1.1	mg/Kg-dry	Benzene
11.0	ND	21.0	ND	11.0		ND	21.0		ND	21.0	ND	_		ND	11.0		ND	68	200000	00019	mg/Kg-dry	Anotech
460.0	ND	360.0	ND	460.0	716	ND	350.0		ND	360.0	ND			ND	260.0		ND	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
460.0	ND	360.0	ND	460.0		ND	350.0		ND	350.0	ND	980		ND	260.0		ND				mg/Kg-dry	2-Hexanone
22.0	ND	£2.0	ND	22.0		ND	£2.0		ND	62.0	ND	24		ND	12.0		ND	30	47000	28000	mg/Kg-dry	2-Butanone
790.0	ND	70.0	ND	790.0		ND	690.0		ND	70.0	ND			ND	690.0		ND				mg/Kg-dry	1,3-Dichloropropene
₽60.0	ND	360.0	ND	460.0		ND	350.0		ND	360.0	ND			ND	260.0		ND	6.033	74	26.0	mg/Kg-dry	1,2-Dichloropropane
790.0	ND	70.0	ND	790.0		ND	690.0		ND	70.0	ND			ND	£80.0		ND				mg/Kg-dry	1,2-Dichloroethene
0.034	ND	360.0	ND	460.0		ND	350.0		ND	6.035	ND			ND	\$50.0		ND	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
460.0	ND	360.0	ND	460.0		ND	350.0		ND	360.0	ND			ND	260.0		ND	90.0	098	520	mg/Kg-dry	1,1-Dichloroethene
460.0	ND	360.0	ND	460.0		ND	6.035		ND	650.0	ND			ND	0.032		ND	410.0	021	4.8	mg/Kg-dry	1,1-Dichloroethane
460.0	ND	360.0	ND	460.0		ND	350.0		ND	0.035	ND	980		ND	\$50.0		ND	0.032	LG.	1.1	mg/Kg-dry	1,1,2-Trichloroethane
460.0	ND	650.0	ND	460.0		ND	360.0		ND	360.0	ND	980		ND	\$50.0		ND	0.00053	31	73.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
460.0	ND	360.0	ND	460.0		ND	650.0		ND	360.0	ND	980		ND	250.0		ND	4.1	097	097	mg/Kg-dry	1,1,1-Trichloroethane
ס אר	Result		Result Q			Result			Result		D Ilues	SL R		Result			Result			2000000000		
(.2-)			2-0)		.Z-(.Z-0			z-o)		(,Z			'S-0)		Groundwater		DeMinimis	Units	AlkinA
27-5	SS	12	z-ss	0	2-S			1-S			-ss		7 FD	I-SS	L	1-88	S	Migration to	Industrial	Residential	-91-11	-7-1
						s6	Debth b	18	mble ID	Sa												

Notes: Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Residential De Minimis value.
Result exceeds the Industrial De Minimis value.

Result exceeds the Migration to Groundwater value.

Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected shove the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assess

Johns Manville-Riverside Parcels Table 3. PAH Concentrations in Surface Soil

99611 # dAV

														Notes:
400.0 L ≤00.0	₽00.0 ₹00.0	20.0	0 400.0 L 4	0.022 BE-0.	81.0	6ε0.0 ε μ .	0 610.0 41.0	860.0 \$40.0	400.0 \\ \7\partial 0.0	001	00089	2300	mg/Kg-dry	Pyrene
400.0 L S00.0	400.0 L 400.0	20.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 400.0	0.022 ND	160.0	043 0.039	0 610.0 570.0	860.0 L 310.0	0.023 0.004	7400	000019	23000	mg/Kg-dry	Phenanthrene
400.0 □N	400.0 QN	0.00 L 400	0 400.0	0.022 ND	L 600.0	4D 0.039	910.0 L 10.0	8 £0.0 L 800.0	400.0 L S00.0	⊅ 600.0	180	3.6	mg/Kg-dry	Naphthalene
400.0 □N	400.0 L 400.0	20.0 390	0 400.0	0.022 ND	970.0	0.039	0 610.0 490.0	8E0.0 L 1E0.0	₽ 00.0	2.3	58	61.0	mg/Kg-dry	Indeno(1,2,3-cd)pyrene
8E-04 1 0.004	ND 0.004 □	VD 0.02	₽00.0	0.022 ND	L 700.0	4D 0.039	ero.o L 800.0	8E0.0 QN	0.002 J 0.004	06	00049	2900	mg/Kg-dry	Fluorene
400.0 L S00.0	₽ 00.0 ₹ 00.0	20.0 11.	0 400.0 L p	0.022 8E-0	62.0	9£0.0 ££.	0 610.0 71.0	860.0 940.0	400.0 300.0	3200	30000	2300	mg/Kg-dry	Fluoranthene
400.0 □N	400.0 L 100.0	20.0 L 310	0 400.0	0.022 ND	L 610.0	650.0 290	0 610.0 L 810.0	860.0 L 620.0	p 00.0 800.0	62.0	2.9	310.0	mg/Kg-dry	Dibenzo(a,h)anthracene
400.0 □N	≯ 00.0	20.0 190	0 400.0	0.022 ND	680.0	650.0 32.	0 610.0 870.0	860.0 L 160.0	400.0 880.0	12	2900	٩٤	mg/Kg-dry	Chrysene
400.0 □N	400.0 L €00.0	20.0 720	0 400.0	0.022 ND	260.0	9£0.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.029 0.019 0	860.0 L 910.0	₽ 00.0 6 10.0	6.9	590	3.1	mg/Kg-dry	Benzo(k)fluoranthene
400.0 L 100.0	400.0 L 400.0	20.0 670	0 400.0	0.022 ND	\$80.0	650.0 es.	0.062 0.019 0	8£0.0 L ES0.0	\$0.00 S0.0	82000	23000	1200	mg/Kg-dry	Benzo(g,h,i)perylene
ND 0.012	ND 0.012	690'0 1/80	0.012 0	0.065 ND	1.0	31 0.12	0.08 0.058	11.0 QN	110.0 620.0				mg/Kg-dry	Benzo(e)byrene
800.0 L S00.0	800.0 110.0	0.039	800.0	0.043 ND	62.0	870.0 88.	0.21 0.039 0	970.0 L 380.0	800.0 830.0				mg/Kg-dry	Benzo(b-k)fluoranthene
400.0 L S00.0	4 00.0 800.0	20.0 71,	0.004	0.022 ND	22.0	9£0.0 14.	0 610.0 81.0	860.0 840.0	400.0 650.0	17.0	58	ð1.0	mg/Kg-dry	Benzo(b)fluoranthene
400.0 L 100.0	400.0 300.0	20.0	0.004	0.022 ND	£1.0	32 0.039	0.011 0.019	860.0 240.0	\$00.0 620.0	7.4	6.2	0.015	mg/Kg-dry	Benzo(a)pyrene
400.0 QN	400.0 800.0	20.0 81.	0.004	0.022 ND	81.0	92. 0.039	610.0 81.0	850.0 L 450.0	0.031 0.004	12.0	58	31.0	mg/Kg-dry	Benzo(a)anthracene
₩D 0.004	8E-04 J 0.004	20.0 L 800	0 400.0	0.022 ND	0.024	650.0 L 520	0.023 0.019 0	8£0.0 L 800.0	400.0 800.0	7200	000019	23000	mg/Kg-dry	Anthracene
₩D 0.004	ND 0.004	20.0 820	0 400.0	0.022 ND	60.03	660.0 60.	0.0 L 010.0	8£0.0 L 800.0	\$00.0 B00.0	97	75000	4300	mg/Kg-dry	Acenaphthylene
400.0 QN	400.0 QN	ND 0.02	⊅ 00.0	0.022 ND	ND	ND 0.039	0.019 dN	ND 0.038	ND 0.004	97	00099	4100	mg/Kg-dry	Acenaphthene
Result Q RL	Result Q RL I	Sault Q RL	יונּ ס אר אי	RL Resu	Result Q	Sult Q RL	Zesult Q RL R	Result Q RL	Result Q RL					
(.2-0)	(,z-o)	(0-2.)	(0-2,)		.Z-O)	(.z-o)	(.z-o)	(.Z-0)	(.2-0)	Groundwater	DeMinimis	DeMinimis		
8-SS	L-SS	9-55	9-55		7-SS	E-SS	Z-SS	25-1 FD	I-SS	Migration to	Industrial	The second secon	stinU	Analyte
					nple ID & L						1			

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessment.

Johns Manville-Riverside Parcels Table 3. PAH Concentrations in Surface Soil

99611 # 4AV

\$0.00 SE0.0	440.0	2.0	420.0		0.32	810.0	1	80.0	8£0.0	17.0	₽00.0	L S00.0	750.0		68.0	₽00.0	440.0	400	28000	2300	mg/Kg-dry	Pyrene
	440.0	260.0	420.0		61.0	810.0	3 1	510.0	860.0	6.0	400.0	7E-04 J	750.0		16.0	400.0	620.0	7400	000019	23000	mg/Kg-dry	Phenanthrene
400.0 400.0	440.0	810.0	420.0	r	410.0	810.0		ND	850.0	L 800.0	₽00.0	ND	750.0	r	0.026	₽00.0	300.0	1 600.0	180	3.6	mg/Kg-dry	Naphthalene
400.0 810.0	440.0	1.0	₽20.0		21.0	810.0	2	240.0	850.0	71.0	₽ 00.0	ND	750.0		41.0	₽ 00.0	620.0	2.3	67	G1.0	mg/Kg-dry	Indeno(1,2,3-cd)pyrene
400.0 L ≤00.0	440.0	600.0	420.0	r	10.0	810.0		ND	850.0	J 720.0	400.0	ND	750.0	r	0.022	400.0 □	100.0	06	00078	2900	mg/Kg-dry	Fluorene
₽00.0 6£0.0	440.0	62.0	0.024		98.0	810.0	9	990.0	850.0	86.0	400.0	U.000.0	7.0.0		84.0	400.0	640.0	3200	30000	2300	mg/Kg-dry	Fluoranthene
400.0 L 400.0	440.0	0.026	420.0		pE0.0	810.0	r 6	900.0	860.0	940.0	₽ 00.0	ND	7.00.0		750.0	₽ 00.0	900.0	62.0	2.9	310.0	mg/Kg-dry	Dibenzo(a,h)anthracene
400.0 810.0	440.0	0.12	420.0		71.0	810.0	7	240.0	860.0	42.0	₽ 00.0	ND	7.0.0		91.0	₽00.0	660.0	21	2900	91	mg/Kg-dry	Chrysene
№ 00.0 800.0	440.0	11.0	420.0		790.0	810.0		21.0	860.0	480.0	400.0	ND	750.0		690,0	400.0	120.0	6.9	590	3.1	mg/Kg-dry	Benzo(k)fluoranthene
₽ 00.0 ₹10.0	440.0	1.0	0.024		61.0	810.0	8	340.0	860.0	71.0	400.0	ND	7.0.0		71.0	₽00.0	620.0	82000	23000	1700	mg/Kg-dry	Benzo(g,h,i)perylene
210.0 20.0	61.0	0.12	270.0		81.0	330.0	I I	190.0	11.0	62.0	110.0	ND	11.0		61.0	210.0	60.0				mg/Kg-dry	Benzo(e)pyrene
800.0 640.0	880.0	28.0	840.0		64.0	750.0	9	92.0	970.0	69.0	700.0	L S00.0	470.0		64.0	800.0	70.0			16.	mg/Kg-dry	Benzo(b-k)fluoranthene
400.0 140.0	440.0	12.0	0.024		98.0	810.0	1	£1.0	8£0.0	6.0	400.0	ND	750.0		86.0	400.0	640.0	17.0	58	61.0	mg/Kg-dry	Benzo(b)fluoranthene
0.024 0.004	440.0	91.0	420.0		0.22	810.0	9	990.0	860.0	15.0	400.0	L 100.0	760.0		62.0	400.0	460.0	Γ.4	2.9	310.0	mg/Kg-dry	Benzo(a)pyrene
400.0 460.0	440.0	42.0	420.0		15.0	810.0	1	80.0	860.0	28.0	400.0	ND	750.0		6.0	400.0	280.0	12.0	58	61.0	mg/Kg-dry	Senzo(a)anthracene
₩00.0 300.0	440.0	0.026	420.0		140.0	810.0	r 2	700.0	8£0.0	41.0	₽00.0	ND	750.0		640.0	₽ 00.0	₽00.0	7200	000019	23000	mg/Kg-dry	Anthracene
₽00.0 300.0	440.0	0.026	420.0		6.043	810.0	9	0.026	850.0	L 310.0	400.0	ND	750.0	1	60.0	400.0	900.0	97	75000	4300	mg/Kg-dry	Acenaphthylene
400.0 L 100.0	440.0	ND	420.0	r	700.0	810.0		ND	850.0	730.0	₽00.0	ND	750.0	r	0.022	₽00.0	ND	97	00099	4100	mg/Kg-dry	Acenaphthene
Result Q RL	S BL	Result	ВГ	O	Result	BL	D III	Resn	I BL	Result	RL	Result Q	RL	O	Result	ל אר	Result					
(.z-o)	5,)	-0)	(,	Z-0))	(,	Z-0)		5,)	(0-2	(,;	Z-0)	(,	(0-5)	5.)	-0)	Groundwater	DeMinimis	siminiM9 Q	eville	as finite
91-SS	91-	SS	Þ	1-55	S	3	I-SS	4	12	-SS	11	-SS	0	1-55	S	6-9	SS	Migration to	Industrial	Residential	units	Analyte
						S	6q y	g Dept	DI əldu	Sar												

Comparison values taken from Table §60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value.
Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessn

Johns Manville-Riverside Parcels Table 3. PAH Concentrations in Surface Soil

VRP # 11966

Principal maykg-dry 0.016 2.9 4.7 0.069 0.069 0.069 0.007 0.0038 ND 0.0076 0.0096 ND 0.0076 0.0098 ND 0.0076 ND 0.0076 ND 0.0078 ND 0.00	1700.0	120.0	9700.0	990.0	110.0		0.015	9700.0		ND	8600.0	U_S100.0	670.0	L 170.0	690.0	1	990.0	007	00089	2300	mg/Kg-dry	yrene
May			9700.0	120.0	110.0	r	9900.0	9700.0		ND	8600.0	L 8000.0	670.0	L 6E0.0	690.0	L	120.0	7400			mg/Kg-dry	henanthrene
Single composed by the compo	1700.0 L 4	4100.0	9700.0	ND	110.0		ND	9700.0		ND	8£00.0	ND	670.0	ND	690'0		ND	4600.0	180	3.6	mg/Kg-dry	Vaphthalene
Designed by Britisher Desi	1700.0	910.0	970.0	ND	11.0	r	660.0	9700.0		ND	8£00.0	L \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	670.0	L 330.0	690.0	1	140.0	2.3	58	61.0	mg/Kg-dry	ndeno(1,2,3-cd)pyrene
Darkfrescence mg/Kg-dry 0.15 2.9 0.23 0.034 0.059 0.0058 0.0038	1700.0	ND	9700.0	ND	110.0		ND	9700.0		ND	8£00.0	ND	670.0	ND	690'0		ND	06	00049	2900	mg/Kg-dry	-Iuorene
May by tene may Kg-dry 0.015 2.90 0.21 0.005 0.0	1700.0	820.0	9700.0	30.0	110.0		710.0	9700.0		600.0	8500.0	L 6100.0	670.0	L 670.0	690.0	r	990.0	3200	30000	2300	mg/Kg-dry	-luoranthene
10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 1000000 100000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 100000 100000 100000 100000 100000 1000000 1000000	1700.0 r	1700.0	970.0	ND	11.0		ND	9 700.0		ND	8£00.0	L 6100.0	670.0	U.039	690'0	1	₽£0.0	62.0	2.9	310.0		Oibenzo(a,h)anthracene
1	1700.0	310.0	9700.0	720.0	110.0	r	8800.0	9700.0		ND	8£00.0	L 3100.0	670.0	11.0	690.0		ND	71	2900	12	mg/Kg-dry	Chrysene
1700 170	1700.0	110.0	970.0 L	0.023	11.0		ND	9 700.0		ND	8£00.0	U_S100.0	670.0	ND	690.0	1	120.0	6.9	590	∂. ſ	mg/Kg-dry	3enzo(k)fluoranthene
1	1700.0	0.029	970.0 L	620.0	11.0		ND	9700.0		ND	8600.0	J 7200.0	670.0	L 150.0	690.0	r	820.0	82000	23000	1200	mg/Kg-dry	3enzo(g,h,i)perylene
Maykg-dry 0.15 29 0.07 0.083 0.069 0.067 0.0038 ND 0.0006 0.0056 0.0038 ND 0.0006 0.0056 0.0038 ND 0.0006 0.0056 0.016 0.0038 ND 0.0056 0.0056 0.016 0.0056	120.0 L I	120.0	0.023	6.033	650.0		ND	620.0		ND	210.0	ND	42.0	ND	12.0		ND			X	mg/Kg-dry	3enzo(e)pyrene
1700.0 1700.0 1800.0 1	410.0	6.033	31.0 L	190.0	22.0		ND	310.0		ND	7700.0	L 8400.0	91.0	U.12 J	41.0	1	1.0			7	mg/Kg-dry	3enzo(b-k)fluoranthene
1700.0 170.0	1700.0	0.022	970.0 L	860.0	11.0		ND	9700.0		ND	8£00.0	L 3600.0	670.0	1.0	690.0		680.0	17.0	58	31.0	mg/Kg-dry	genzo(b)fluoranthene
	1700.0	810.0	970.0 L	0.023	11.0	r	220.0	9 700.0		ND	8£00.0	L 7200.0	670.0	780.0	690.0		690.0	7.4	2.9	310.0	mg/Kg-dry	3enzo(a)pyrene
1100.0 C 1200.0 0100.0	1700.0	710.0	9700.0	0.029	110.0	1	6600.0	9700.0		ND	8500.0	0.0023 J	670.0	L £80.0	690.0		21.0	12.0	58	91.0	mg/Kg-dry	3enzo(a)anthracene
1 200 0 1 1 200 0 1 200 0 1 1 10 0 1 1 200 0 1 200 0 1 20	1700.0 L 1	1200.0	9700.0	ND	110.0	r	2200.0	9700.0		ND	8600.0	ND	670.0	L 810.0	690.0		ND	7200	000019	23000	mg/Kg-dry	Anthracene
74300 75000 75 ND 0.069 0.016 J 0.079 ND 0.0038 ND 0.0076 ND 0.0076 ND 0.0076 ND 0.0076 0.0042 J 0.0071	1700.0 L S	0.0042	9700.0	ND	110.0		ND	9700.0		ND	8600.0	ND	670.0	L 310.0	690.0		ND	GZ.	75000	4300	mg/Kg-dry	ycensphthylene
11) or of the may Kg-dry 4100 66000 75 ND 0.069 ND 0.079 ND 0.0038 ND 0.0076 ND 0.0011 ND 0.0076 ND 0.0071	1700.0	ND	9700.0	ND	110.0		ND	9700.0		ND	8600.0	ND	670.0	ND	690.0		ND	97	00099	4100	mg/Kg-dry	ycenaphthene
Result of Re Result of Res	ווּ ס אר	Result	ס אר	Result	RL	O	Result	ВГ	O	Result	BL	Result C	אר	Result Q	RL	Ø	Result					
Only 10 DeMinimis DeMinimis Groundwater (0-2') (0-2') (0-2') (0-2') (0-2') (0-2')	('S-0)		-2.)	0)	(.Z-0)	((.Z-O.)	(,7	:-0)	(,	Z-0)		0-2		Groundwater	DeMinimis	DeMinimis	CILLO	as finite
Analyte Units Residential Industrial Migration to SS-17 SS-17 FD SS-19 SS-20 SS-21 SS-22 S	22-22	3	12-51	SS	0	Z-S	S	6	1-5	S	81	-SS	ŁD	ZI-SS	1	1-59	S	Migration to	Industrial	Residential	stintl	atylenA
Sample ID & Depth bgs							-66	a mdac	7 10 (ar ardun	20			-11								

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessn

Johns Manville-Riverside Parcels Table 4. RCRA 8 Metals Concentrations in Surface Soil

												007									
			6.1	lt.	1.2	11	8.1	11	1.2	8.8	2.2	8.7	6.1	110	0.2	OFF	8.3	72	65.0	mg/Kg-dry	/rsenic
		7.0		Pesult Q		Result Q		Result Q	RL	Result Q	BL	Result Q	RL	Result Q	RL	Result Q					
		10	(.Z-0)	The state of	(.Z-0)	(,	Z-0)		('S-0)		.Z-0)		.Z-0)		.z-o)	Groundwater	DeMinimis	DeMinimis	SinU	Analyte
			2	Z-SS		Z-SS	0	Z-SS		31-SS		I-SS	FD	ZI-SS	1	I-SS	Migration to	Industrial	Residential	stintt	otylenA
								sß	ebth b	nple ID & D	Sai						7				
	11010	1 1 07:0	10010	T L agus	107010	11.00	Lavara	Lavara	Talaia	T I		Llamaia		Liver		I I				f 6 6	
	710.0		₽60.0	86.0	020.0	0.24	910.0	040.0	610.0		310.0		710.0	180.0	₽20.0	L 12.0	2.1	019	23	mg/Kg-dry	Mercury
	2.2	L 41.0	2.6	L 47.0	2.9	L 61.0	6.r	L 31.0	6.1	L 01.0	2.3	L 120.0	1.2	L 31.0	2.0	1 700	31	10000	390	mg/Kg-dry	Silver
-	2.2	L S.1	9.2	2.3	2.9	L 8.1	6.1	L S.1	6.1	L 86.0	2.3	L 38.0	1,2	L 8.1	2.0	L P.1	2.3	10000	390	mg/Kg-dry	muinələ
4	2.2	36	9.2	130	2,9	53	6.1	86	6.1	179	2.3	12	1.5	28	0.2	63	270	1000	001	mg/Kg-dry	-ead
_	2.2	55	9.2	19	2.9	28	6.1	73	6.1	11	2.3	- tl	1.5	77	2.0	56	2000000000	10000001	120000	mg/Kg-dry	Chromium
_	78.0	2.1	0.1	3.2	2.1	L I.I	77.0	L 17.0	47.0	L 67.0	26.0	L 61.0	28.0	6.1	08.0	1.1	3.7	008	37	mg/Kg-dry	muimbsO
1	2.2	071	2.6	190	2.9	240	6.1	420	6.1	420	2.3	160	1.5	049	2.0	200	1600	360000	12000	mg/Kg-dry	Barium
L	2.2	12	9.2	61	2.9	61	6.1	59	6.1	91	2.3	T.T	1.2	39	0.2	GL	8.3	72	95.0	mg/Kg-dry	SinesiA
		Result		Result		Result		Result		Result		Result		Result Q		Result					
		.z-o)		.Z-0)		.Z-0)		Z-0)		(.Z-0)		Z-0)		.Z-0)		.Z-0)		(C) (C) (C) (C) (C)	SiminiMad	Units	AtylanA
	9	I-SS	g	I-SS	t	1-SS	-	-SS	4	I-SS	l l	I-SS	0	I-SS		6-SS	Migration to	Industrial	Residential	-4.5411	- Villam V
L							SI	Depth be	8 GI əld	imes											
.0 00.0	770'0	I I 01:0	070:0	I locoro	020:0	I Lecoro					21.0	ev:0	220.0	+c.u	220.0	I I di.u	1.2	010	07	Aug-6yu/6uu	(Inc. CAL)
	2.2 220.0		EZ0.0	990.0		650.0	920.0	11.0	6 <u>5</u> 0.0	0.039	21.0	67.0	220.0	48.0	220.0	81.0	7.2	019	73	mg/Kg-dry	
0.034 J 2.	2.2	L 740.0	6.1	L 080.0	1.5	L 020.0	8.S 8.0.0	L &1.0	6.1 820.0	L 980.0	0.2	L 1E.0	2.0	L 01.0	6.1	L 880.0	31	10000	390	mg/Kg-dry	Silver
.2 L 88.0 .2 L 460.0	2.2	L 78.0 L 740.0	9.1 9.1	L 37.0 L 080.0	2.1	L 0.1 L 020.0	2.5 2.5 0.026	L F.P L EF.O FF.O	6.1 9.1 820.0	L 16.0 L 360.0 660.0	2.0 2.0	L 8.1	2.0 2.0	L 87.0 L 01.0	9.1 9.1	L 880.0	5.2 31	10000	390 390	mg/Kg-dry mg/Kg-dry	Selenium Silver
15 L 83.0 2.0	2.2	L 78.0 L 740.0	9.1 9.1	L 37.0 L 080.0	2.1 2.1 2.1	L 0.1 L 0.00.0	2.5 3.2 3.2 5.000	041 L 1.1 L 81.0 L 11.0	9.1 9.1 9.1 8.20.0	L 16.0 L 360.0 L 960.0	2.0 2.0 2.0	69 L 9.1 L 16.0	2.0 2.0 2.0	24 L 87.0 L 01.0	9.1 9.1	86 L 86.0 L 880.0	270 5.2 31	1000 10000 100001	390 390 400	mg/kg-dry mg/kg-dry mg/kg-dry	Lead Selenium Silver
0.2 81 0.2 L 88.0 0.2 L \$60.0	2.2 2.2 2.2 2.2	81 02 L 78.0 L 740.0	9.1 9.1 9.1	26 L 37.0 L 080.0	2.1	9t 3t 0.1 0.020.0	2.5 2.5 2.5 2.5 2.5 0.026	26 140 1 1.1 1 21.0 1 11.0	9.1 9.1 9.1 9.1 8.20.0	67 650.0 1 16.0 1 960.0	2.0 2.0 2.0 2.0	25 39 L 3.1 L 15.0	2.0 2.0 2.0 2.0	32 24 87.0 U 81.0	9.1 9.1 9.1	91 85 L 59.0 L 880.0	2000000000 5.2 31	0000001 0001 00001 00001	390 390 390 390	ω∂\κ∂-qιλ ω∂\κ∂-qιλ ω∂\κ∂-qιλ ω∂\κ∂-qιλ	Chromium Lead Selenium Silver
7.0 L 82.0 9.2 81 7.2 L 88.0 9.2 L \$60.0	0.90 2.2 2.2 2.2 2.2	L 06.0 81 02 L 78.0 L 740.0	77.0 9.1 9.1 9.1	L 88.0 68 7 48 L 87.0 L 080.0	1.2 1.2 1.2 1.2 1.2	L SS.0 81 81 C 0.1 L 0.20.0	9.50 9.2 9.2 3.5 0.00 9.20	0.00.0 82 041 041 0 1.1 0 81.0 1 81.0	9.1 9.1 9.1 9.1 9.1 8.0.0	67 1 14 67 1 16.0 1 860.0 0 860.0	28.0 0.2 0.2 0.2 0.2	8.1 SE 39 L 8.1 L 75.0	0.81 0.2 0.2 0.2 0.2	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	77.0 9.1 9.1 9.1	87.0 61 88 L 86.0 L 880.0	7.5 2000000000 2.7 3.1 3.1	008 0000001 0001 00001 00001	350 400 400 360 360	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	Gadmium Chromium Lead Selenium Silver
009 009 009 009 009 009 009 009 009 009	2.2 2.2 2.2 2.2 2.2 2.2	061 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	9.1 9.1 9.1 9.1	084 L 86.0 - 46 L 37.0 L 080.0	1.2 48.0 1.2 1.2 1.3 1.3	0SS L SS.0 31 61 C 0.1 L 0.1	949 6.0 6.2 6.2 6.2 6.2 8.2 0.00	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	9.1 9.1 9.1 9.1 9.1 8.1 8.0.0	052 L 74.0 67 L 16.0 L 16.0 U 0.036	0.2 28.0 0.2 0.2 0.2 0.2 0.2	9.1 8.1 36 28 0.1 8.1 8.1 8.1 8.1	18.0 0.2 0.2 0.2 0.2 0.2	0.83 88.0 32 24 24 87.0 01.0	6.1 6.1 6.1 6.1	97.0 87.0 88 8 88.0 L 880.0	1600 7.5 2000000000 270 5.2 31	360000 800 100000 1000 10000 10000	37 120000 400 390 390	mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry	Barium Cadmium Chromium Lead Selenium Silver
0.5 000 0.2 000 0.2 0.2 0.7 0.2 0.83 0.2	2.2 2.90 2.5 2.2 2.2 2.2 2.2	9.8 091 0 05.0 81 0 05.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.1 6.1 6.1 6.1 6.1	084 85.0 88.0 48 7.0 40 080.0	1.2 1.2 48.0 1.2 1.2 1.2	2.6 022 022 0.5 0.7 0.1 0.1	64 69.0 6.0 6.2 6.2 6.2 6.2 6.2 6.2	20 0.90 0.90 0.90 0.90 0.91 0.11 0.13 0.13 0.13	9.1 9.1 9.1 9.1 9.1 9.1 8.0.0	022 L 74,0 67 L 16.0 L 16.0 U 360.0	0.2 0.2 28.0 0.2 0.2 0.2 0.2	071 8.1 36 28 3.1 30 1 8.1	0.2 14 18.0 0.2 0.2 0.2 0.2	067 87.0 087.0	6.1 6.1 6.1 6.1 6.1	064 87.0 87.0 88 01 880.0	8.8 1600 7.5 2000000000 270 5.2 31	008 0000001 0001 00001 00001	350 400 400 360 360	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	Cadmium Chromium Lead Selenium Silver
Result Q RI RI RI RI RI RI RI	2.2 2.2 0.90 2.2 2.2 2.2 2.2 2.2	9.8 9.8 9.9 0.00 0.30 81 20 20 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 0	9.1 9.1 9.1 9.1 9.1 9.1	Assoluted to the control of the cont	7.7 2.1 2.1 0.84 7.2 1.2 1.3	2.6 0.22 0.22 0.022 0.023 0.020 0.020	2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	20	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	220 220 220 0.47 0.47 0.036 0.036 0.036 0.039	0.2 0.2 0.2 28.0 0.2 0.2 0.2 0.2	25 16 170 170 170 170 180 190 100 100 100 100 100 100 10	7.0 2.0 1.4 0.81 0.2 0.2 0.2 0.2 0.2	Result 0.10 14 730 0.83 0.83 0.78 0.78 0.10 0.10	9.1 9.1 9.1 9.1 9.1 9.1	Δ \$\frac{\rho}{\rho}\$ \$\frac{\rho}{\rho}\$	8.8 1600 7.5 2000000000 2.2 3.1	27 360000 100000 1000 1000 10000	0.39 150000 120000 120000 390 390	mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry	Barium Cadmium Chromium Lead Selenium Silver
('S-0) Result Q RI 13 2.0 8.00 2.0 8.00 3.0 15 8.0 16 8.0 17 8.0 18 9.0 18 9.0 19 9.0 10 0.3 10 0.	7.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	2-0) D Iluse H Q 8 Q 6 Q 6 Q 6 Q 0 Q	() 6.1 6.1 6.1 6.1 6.1 6.1	2-0) Control	7.2 1.2 2.1 2.1 2.1 1.2 1.2 1.2	2.0) Result Q 9.2 2.0 0.22 0.22 16 16 16 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	7) 8,5 9,5 9,5 9,5 6,0 9,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7	Constitution (Constitution (Co	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	(2-0) D shealt Q 12 12 12 12 12 12 12	28.0 0.2 28.0 0.2 0.2 0.2 0.2 0.2	2-0) Mess Miss Mi	78.0 41 0.81 0.81 0.0 0.0 2.0 2.0	2-0) Messill (Q) Messill (Q) Messill (Q) 10	9.1 9.1 9.1 9.1 9.1 9.1	064 87.0 87.0 88 01 880.0	6roundwater 5.8 1600 7.5 270 270 270 5.2 31	27 360000 100000 10000 10000 10000	DeMinimis 0.39 150000 120000 120000 390 390	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	Arsenic Barium Cadmium Chromium Lead Selenium Silver
Result Q RL Result Q RL RL RL RL RL RL RL	7.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	9.8 9.8 9.9 0.00 0.30 81 20 20 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 10 0.30 0	() 6.1 6.1 6.1 6.1 6.1 6.1	Assoluted to the control of the cont	7.2 1.2 2.1 2.1 2.1 1.2 1.2 1.2	2.0) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	7) (1) (2) (3) (3) (4) (4) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	20	78 1.9 1.9 1.9 1.9 1.9 1.9 1.9	220 220 220 0.47 0.47 0.036 0.036 0.036 0.039	28.0 0.2 28.0 0.2 0.2 0.2 0.2 0.2	25 16 170 170 170 170 180 190 100 100 100 100 100 100 10	78.0 41 0.81 0.81 0.0 0.0 2.0 2.0	Result 0.10 14 730 0.83 0.83 0.78 0.78 0.10 0.10	(6.1 9.1 77.0 9.1 9.1 9.1	Δ \$\frac{\rho}{\rho}\$ \$\frac{\rho}{\rho}\$	8.8 1600 7.5 2000000000 2.2 3.1	27 360000 100000 10000 10000 10000	0.39 150000 120000 120000 390 390	mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry mg/kg-dry	Barium Cadmium Chromium Lead

02.0 810.0 820.0 mg/Kg-dry Mercury 2.1 019 23 mg/Kg-dry 0.13 1 2.0 34 10000 390 Silver 5.2 mg/Kg-dry 100001 390 muinələ mg/Kg-dry 180 270 1000 400 -ead mg/Kg-dry Chromium 21 2000000000 10000001 120000 2.4 3.7 008 32 mg/Kg-dry MuimbeO

16000

360000

Notes:

Barium

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value.

Reporting limit exceeds the most restrictive De Minimis value.

mg/Kg-dry

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessment.

J - Estimated Value

350.0 310.0

2.2 L 440.0 | 9.1 L 71.0

6.1 L

9.1

9.1

77.0

6.1

3.1

13

カレ

92.0

160

6.1

540

52

6.1

920

2.0

0.2

0.2

18.0

0.2

210

1600

780.0 010.0

1.5

1.2

1.5

28.0

1.5

L 42.0

3.1

97

14

26.0

320

6.1

67.0

6.1

980.0 410.0

S.1

67

8.6

8.1

120

8.1

8.1

8.1

8.1

27.0

8.1

U 120.0

28.0

11

6.9

L 370.0

42

1.2 L 12.0

710.0 410.0 140.0 410.0

1.2 L

1.2

1.2

38.0

1.2

1.2 L SE0.0

3.1

91

91

62.0

190

2.2

2.2

2.2

88.0

2.2

Johns Manville-Riverside Parcels Table 5. VOC Concentrations in Subsurface Soil

1	9	9	6	L	L	#	ΛКР

11.0	ND	0.12	ND	11.0	ND	21.0	ND	41.0	81.0	11.0	ND	11.0	ND	11.0	ND	200	100	100	mg/Kg-dry	Xylenes, Total
860.0	ND	40.0	ND	750.0	ND	₽0.0	ND	740.0	ND	780.0	ND	980.0	ND	750.0	ND	4069810.0	868086.12		mg/Kg-dry	Vinyl chloride
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	980.0	21	84.0	mg/Kg-dry	Trichloroethene
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	780.0	ND				mg/Kg-dry	frans-1,3-Dichloropropene
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	780.0	ND	69.0	017	160	mg/Kg-dry	frans-1,2-Dichloroethene
860.0	ND	₽0.0	ND	750.0	ND	40.0	ND	740.0	ND	7.00.0	ND	980.0	ND	750.0	ND	サ し	360	360	mg/Kg-dry	Toluene
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND	640.0	36	95.0	mg/Kg-dry	Tetrachloroethene
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	780.0	ND	2.2	340	340	mg/Kg-dry	Styrene
8£0.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	970.0	750.0	ND	980.0	ND	760.0	ND				mg/Kg-dry	o-Xylene
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	0.025	089	11	mg/Kg-dry	Methylene chloride
970.0	ND	80.0	ND	GT0.0	ND	80.0	ND	660.0	11.0	470.0	ND	170.0	ND	670.0	ND				mg/Kg-dry	m,p-Xylene
860.0	ND	40.0	ND	7.60.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	760.0	ND	91	061	6.6	mg/Kg-dry	Ethylbenzene
8£0.0	ND	40.0	ND	7.0.0	ND	₽0.0	ND	740.0	ND	750.0	ND	980.0	ND	760.0	ND				mg/Kg-dry	Dibromochloromethane
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	760.0	ND				mg/Kg-dry	eis-1,3-Dichloropropene
860.0	ND	40.0	ND	7.0.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	760.0	ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
61.0	ND	E1.0	ND	21.0	ND	£1.0	ND	91.0	ND	0.12	ND	0.12	ND	0.12	ND	86.0	910	150	mg/Kg-dry	Chloromethane
860.0	ND	₽0.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	1100.0	91	£.0	mg/Kg-dry	Chloroform
£1.0	ND	61.0	ND	0.12	ND	61.0	ND	91.0	ND	0.12	ND	0.12	ND	0.12	ND	120	1900	1900	mg/Kg-dry	Chloroethane
860.0	ND	40.0	ND	7.0.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND	4.1	340	300	mg/Kg-dry	Chlorobenzene
860.0	ND	40.0	ND	7.60.0	ND	₽0.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	650.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
8£0.0	ND	40.0	ND	760.0	ND	₽0.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	1.9	01/9	079	mg/Kg-dry	Carbon disulfide
960'0	ND	1.0	ND	660.0	ND	1.0	ND	0.12	ND	690.0	ND	680.0	ND	460.0	ND	440.0	33	8.T	mg/Kg-dry	Bromomethane
8£0.0	ND	40.0	ND	750.0	ND	₽0.0	ND	740.0	ND	750.0	ND	9£0.0	ND	780.0	ND	640.0	3100	19	mg/Kg-dry	Bromoform
860.0	ND	₽0.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	49000.0	bl	82.0	mg/Kg-dry	Bromodichloromethane
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND	130.0	89	1.1	mg/Kg-dry	Benzene
61.0	ND	61.0	ND	0.12	ND	61.0	ND	91.0	ND	0.12	ND	21.0	ND	0.12	ND	68	200000	00019	mg/Kg-dry	Acetone
8£0.0	ND	₽0.0	ND	760.0	ND	₽ 0.0	ND	740.0	ND	760.0	ND	9£0.0	ND	750.0	ND	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
860.0	ND	₽ 0.0	ND	750.0	ND	₽0.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND				mg/Kg-dry	2-Hexanone
62.0	ND	72.0	ND	92.0	ND	72.0	ND	16.0	ND	62.0	ND	0.24	ND	62.0	ND	30	00074	28000	mg/Kg-dry	2-Butanone
970.0	ND	80.0	ND	GT0.0	ND	80.0	ND	660.0	ND	470.0	ND	170.0	ND	GY0.0	ND		10		mg/Kg-dry	1,3-Dichloropropene
860.0	ND	40.0	ND	750.0	ND	₽0.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	650.0	27	26.0	mg/Kg-dry	1,2-Dichloropropane
970.0	ND	80.0	ND	G70.0	ND	80.0	ND	660.0	ND	₽70.0	ND	170.0	ND	670.0	ND				mg/Kg-dry	1,2-Dichloroethene
860.0	ND	₽ 0.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
860.0	ND	40.0	ND	7.60.0	ND	₽0.0	ND	740.0	ND	750.0	ND	9£0.0	ND	750.0	ND	90.0	098	520	mg/Kg-dry	1,1-Dichloroethene
860.0	ND	40.0	ND	750.0	ND	₽0.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	410.0	021	4.8	mg/Kg-dry	1,1-Dichloroethane
860.0	ND	₽0.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	750.0	ND	0.032	Z 9	1.1	mg/Kg-dry	1,1,2-Trichloroethane
860.0	ND	40.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	980.0	ND	780.0	ND	0.00053	15	75.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
860.0	ND	₽0.0	ND	750.0	ND	40.0	ND	740.0	ND	750.0	ND	9£0.0	ΠD	750.0	ND	4.1	420	420	mg/Kg-dry	1,1,1-Trichloroethane
ם אר	Яesult	ל אר	Result	ט אר	Result	צר	Result Q	RL	Result Q	S BL	Result	RL	Result Q	S BL	Result	Terror Committee				
18-	9	.01	-8	.15.	10		9-17	.0	1-8	13,	-11		3-4	,t	3-	Groundwater	DeMinimis	DeMinimis	ewio	and income
7-8	IS	9-8	S	9-8	IS	Þ	-BS	.3	-BS	2-5	BS	FD	I-8S	1-1	8 S	Migration to	Industrial	Residential	stinU	əłylsnA
I						S	y Depth bg	8 Gl əlqr	San											

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Residential De Minimis value.

Result exceeds the Industrial De Minimis value. Result exceeds the Migration to Groundwater value.

Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

 NV - No value established by De Minimis Table, will be determined by Risk Assessment.

Johns Manville-Riverside Parcels Table 5. VOC Concentrations in Subsurface Soil

99611 # 9AV

21.0	ND	21.0	ND	21.0	ND	21.0	ND	11.0	ND	11.0	ND	0.12	ND	11.0	ND	200	100	1001	шд/кд-дгу	Xylenes, Total
140.0	ND	0.039	ND	660.0	ND	40.0	ND	980.0	ND	660.0	ND	650.0	ND	750.0	ND	\$069£10.0	868086.12	2.3(7/1)	mg/Kg-dry	Vinyl chloride
140.0	ND	0.039	ND	980.0	ND	₽0.0	ND	960.0	ND	350.0	ND	650.0	ND	750.0	ND	960.0	21	84.0	mg/Kg-dry	Trichloroethene
140.0	ND	0.039	ND	660.0	ND	₽0.0	ND	980.0	ND	0.035	ND	650.0	ND	750.0	ND	100			mg/Kg-dry	trans-1,3-Dichloropropene
140.0	ND	660.0	ND	660.0	ND	40.0	ND	9£0.0	ND	350.0	ND	650.0	ND	750.0	ND	69'0	012	190	mg/Kg-dry	trans-1,2-Dichloroethene
140.0	ND	660.0	ND	660.0	ND	₽0.0	ND	9£0.0	ND	360.0	ND	650.0	ND	750.0	ND	tl	360	390	mg/Kg-dry	Toluene
140.0	ND	650.0	ND	6£0.0	ND	40.0	ND	9£0.0	ND	360.0	ND	650.0	ND	750.0	ND	940.0	36	99.0	шд/Кд-дгу	Tetrachloroethene
140.0	ND	660.0	ND	660.0	ND	40.0	ND	9£0.0	ND	360.0	ND	650.0	ND	750.0	ND	2.2	340	340	шд/Кд-dгу	Styrene
140.0	ND	660.0	ND	9£0.0	ND	₽0.0	ND	980.0	ND	60.03	ND	650.0	ND	750.0	ND				шд/Кд-дгу	o-Xylene
140.0	ND	650.0	ND	660.0	ND	₽0.0	ND	960.0	ND	360.0	ND	650.0	ND	750.0	ND	0.025	089	11	mg/Kg-dry	Methylene chloride
280.0	ND	870.0	ND	770.0	ND	670.0	ND	270.0	ND	70.0	ND	670.0	ND	670.0	ND				mg/Kg-dry	əuəl/X-d·m
140.0	ND	660.0	ND	650.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	91	190	6.6	mg/Kg-dry	Ethylbenzene
140.0	ND	660.0	ND	660.0	ND	₽0.0	ND	980.0	ND	350.0	ND	650.0	ND	750.0	ND				mg/Kg-dry	Dibromochloromethane
140.0	ND	650.0	ND	6£0.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND				mg/Kg-dry	eis-1,3-Dichloropropene
140.0	ND	0.039	ND	650.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
41.0	ND	£1.0	ND	£1.0	ND	61.0	ND	0.12	ND	21.0	ND	£1.0	ND	0.12	ND	86.0	019	120	mg/Kg-dry	Chloromethane
140.0	ND	650.0	ND	660.0	ND	₽0.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	1100.0	91	€.0	mg/Kg-dry	Chloroform
41.0	ND	61.0	ND	£1.0	ND	£1.0	ND	21.0	ND	21.0	ND	£1.0	ND	0.12	ND	120	1900	1900	mg/Kg-dry	Chloroethane
140.0	ND	950.0	ND	660.0	ND	₽ 0.0	ND	980.0	ND	360.0	ND	650.0	ND	7.0.0	ND	4.1	340	300	mg/Kg-dry	Chlorobenzene
140.0	ND	660.0	ND	650.0	ND	40.0	ND	980.0	ND	360.0	ND	0.039	ND	750.0	ND	660.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
140.0	ND	950.0	ND	650.0	ND	40.0	ND	9£0.0	ND	360.0	ND	950.0	ND	760.0	ND	1.9	01/9	049	mg/Kg-dry	Carbon disulfide
1.0	ND	760.0	ND	960.0	ND	660.0	ND	60.0	ND	880.0	ND	660.0	ND	660.0	ND :	440.0	33	B.T	mg/Kg-dry	Bromomethane
140.0	ND	650.0	ND	650.0	ND	⊅ 0.0	ND	9£0.0	ND	0.035	ND	650.0	ND	750.0	ND	0.045	3100	19	mg/Kg-dry	Bromoform
140.0	ND	650.0	ND	650.0	ND	40.0	ND	980.0	ND	960.0	ND	650.0	ND	750.0	ND	1 9000.0	カレ	82.0	mg/Kg-dry	Bromodichloromethane
140.0	QN	650.0	ND	660.0	ND	₽0.0	ND	960.0	ND	6.035	ND	960.0	ND	750.0	ND	130.0	89	1.1	mg/Kg-dry	Benzene
41.0	ND	61.0	ND	61.0	ND	61.0	ND	0.12	ND	0.12	ND	61.0	ND	21.0	ND	68	200000	00019	mg/Kg-dry	Acetone
140.0	ND	650.0	ΔN	650.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
140.0	ND	650.0	ND	650.0	ND	₽0.0	ND	9£0.0	ND	360.0	ND	960.0	ND	760.0	ND				mg/Kg-dry	2-Hexanone
72.0	ND	92.0	ND	92.0	ND	92.0	ND	₽2.0	ND	62.0	ND	92.0	ND	62.0	ND	30	47000	28000	mg/Kg-dry	2-Butanone
Z80.0	ND	870.0	ΠN	770.0	ND	670.0	ND	270.0	ND	70.0	ND	670.0	ND	GT0.0	ND				mg/Kg-dry	1,3-Dichloropropene
140.0	ND	660.0	ND	650.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	650.0	74	26.0	mg/Kg-dry	1,2-Dichloropropane
Z80.0	ΠN	870.0	ΔN	770.0	ND	670.0	ND	270.0	ND	70.0	ND	670.0	ND	GT0.0	ND				mg/Kg-dry	1,2-Dichloroethene
140.0	ND	660.0	QN	650.0	ND	40.0	ND	980.0	ND	360.0	ND	650.0	ND	750.0	ND	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
140.0	ND	660.0	ΔN	650.0	ND	₽ 0.0	ND	9£0.0	ND	360.0	ND	950.0	ND	750.0	ND	90.0	098	520	mg/Kg-dry	1,1-Dichloroethene
140.0	ND	650.0	ND	650.0	ND	₽0.0	ND	960.0	ND	350.0	ND	660.0	an	750.0	ND	410.0	021	4.6	mg/Kg-dry	1,1-Dichloroethane
140.0	ND	660.0	QN	650.0	ND	40.0	ND	9£0.0	ND	360.0	ND	650.0	ND	750.0	ND	0.032	19	1.1	mg/Kg-dry	1,1,2-Trichloroethane
140.0	ND	650.0	ND	650.0	ND	40.0	ND	980.0	ND	360.0	ND	950.0	ND	750.0	ND	0.00053	31	78.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
140.0	ND	660.0	ND	660.0	ND	40.0	ND	9£0.0	ND	6.035	ND	650.0	ND	750.0	ND	4.1	420	420	mg/Kg-dry	1,1,1-Trichloroethane
	Result		Result		Result		Result		Result		Result		Result		Result			130 Mb. 1140		
.01			-9		1-01		-71		-01	14.			3-9		-91	Groundwater	DeMinimis	DeMinimis	units	Analyte
91-	BS	g1.	·BS	ヤ	-BS		-as		-BS	01.	-SS	6	·8S	8-9	BS	ot noitsreiM	Industrial	Residential	Stiall	omien A
						sb	r Debth b	8 Gl əlqn	Sar											

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value.
Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Defected above the Reporting limit.

 $\ensuremath{\mathsf{NV}}$ - $\ensuremath{\mathsf{No}}$ value established by De Minimis Table, will be determined by Risk Assessi

Johns Manville-Riverside Parcels Table 5. VOC Concentrations in Subsurface Soil

99611 # 4AV

0110		71.0		LUOI	1	Livot		1 1110				1	7-1		7			Jotes.
61.0	QN CN	21.0	ND NO	11.0	ND	11.0	ND	11.0	ND	11.0	ND	21.0	ND	500	100	100	mg/Kg-dry	Xylenes, Total
640.0	ND (A)	660.0	UD U	860.0	ND	960.0	UD ON	960.0	ND (III)	860.0	MD	660.0	ND	4069810.0	868085.12		mg/Kg-dry	
640.0	UN CN	660.0	UD U	860.0	ND	960.0	ND	980.0	MD	860.0	ND	650.0	ND	980.0	21	84.0	mg/Kg-dry	Trichloroethene
640.0	ND	660.0	ND	860.0	ND	960.0	ND	960.0	ND	860.0	ND	9£0.0	ND				mg/Kg-dry	rans-1,3-Dichloropropene
6,043	MD	980.0	ND	860.0	ND	980.0	ND	980.0	ND	860.0	ND	950.0	ND	69.0	017	160	mg/Kg-dry	rans-1,2-Dichloroethene
6,043	ND	650.0	ND	860.0	ND	980.0	ND	980.0	ND	860.0	ND	960.0	ND	71	360	390	mg/Kg-dry	Toluene
640.0	ND	960.0	ND	860.0	ND	9£0.0	ND	980.0	ND	860.0	ND	650.0	ND	940.0	98	99.0	mg/Kg-dry	Tetrachloroethene
640.0	ND	6£0.0	ND	8£0.0	ND	980.0	ND	980.0	ND	860.0	ND	650.0	ND	2.2	340	340	mg/Kg-dry	Styrene
€40.0	ND	650.0	ND	8£0.0	ND	980.0	ND	9£0.0	ND	860.0	ND	0.039	ND				mg/Kg-dry	o-Xylene
640.0	ND	650.0	U.023	860.0	ND	980.0	ND	980.0	U 720.0	860.0	ND	660.0	ND	0.025	089	11	mg/Kg-dry	Methylene chloride
980.0	ND	870.0	ND	970.0	ND	270.0	ND	£70.0	ND	970.0	ND	870.0	ND			4	mg/Kg-dry	-χγlene
£40.0	ND	650.0	ND	8£0.0	ND	980.0	ND	9£0.0	ND	8£0.0	ND	650.0	ND	91	061	6.6	mg/Kg-dry	={ph/penzene
640.0	ND	650.0	ND	860.0	ND	980.0	ND	9£0.0	ND	860.0	ND	660.0	ND				mg/Kg-dry	Dibromochloromethane
640.0	ND	650.0	ND	8£0.0	ND	980.0	ND	9£0.0	ND	8£0.0	ND	660.0	ND				mg/Kg-dry	cis-1,3-Dichloropropene
640.0	ND	950.0	ND	8£0.0	ND	980.0	ND	9£0.0	ND	860.0	ND	660.0	ND	14.0	83	81	mg/Kg-dry	cis-1,2-Dichloroethene
41.0	ND	61.0	ND	61.0	ND	21.0	ND	21.0	ND	61.0	ND	61.0	ND	86.0	019	150	mg/Kg-dry	Chloromethane
6.043	ND	650.0	ND	850.0	ND	980.0	ND	980.0	ND	850.0	ND	650.0	ND	1100.0	91	6.0	шд/Кд-дгу	Chloroform
41.0	ND	61.0	ND	61.0	ND	21.0	ND	21.0	ND	61.0	ND	61.0	ND	120	1900	1900	шд/Кд-drу	Chloroethane
6.00	ND	650.0	ND	850.0	ΠN	980.0	ND	960.0	ND	850.0	ND	660.0	ND	4.1	340	300	mg/Kg-dry	Chlorobenzene
6.043	ND	650.0	ND	850.0	ND	960.0	ND	960.0	ND	850.0	ND	660.0	ND	650.0	32	29.0	mg/Kg-dry	Carbon tetrachloride
640.0	1.0	650.0	990'0	850.0	170.0	980.0	ΠD	9£0.0	ND	850.0	990.0	650.0	ND	1.9	049	049	mg/Kg-dry	Carbon disulfide
11.0	ND	760.0	ND	960'0	ND	160.0	ND	160.0	ND	960.0	ND	760.0	ΠD	440.0	33	B.7	mg/Kg-dry	Bromomethane
640.0	ND	0.039	ND	850.0	ND	960.0	ΠD	980.0	ND	850.0	ND	650.0	ND	940.0	3100	19	mg/Kg-dry	Bromotorm
6.043	ND	650.0	ND	850.0	ND	960.0	ΠD	980.0	αN	860.0	ND	650.0	ΔN	49000.0	7L	82.0	mg/Kg-dry	Sromodichloromethane
6.00	ND	650.0	ND	860.0	ND	980.0	ND	980.0	ΔN	850.0	ND	650.0	ND	130.0	89	1.1	mg/Kg-dry	genzene
41.0	ND	61.0	ND	61.0	ND	0.12	ND	0.12	ΔN	61.0	ND	61.0	dN	68	200000	00019	mg/Kg-dry	Acetone
6.043	ND	650.0	ND	850.0	ND	9£0.0	ND	960.0	ΔN	850.0	ND	660.0	QN.	6	4300	4300	mg/Kg-dry	4-Methyl-2-pentanone
6,043	ND	660.0	ND	8£0.0	ND	960.0	ND	980.0	ΔN	850.0	ND	650.0	I dN	-	0007	0007	mg/Kg-dry	2-Hexanone
62.0	ND	92.0	ND	92.0	ND	42.0	ND	42.0	ΔN	92.0	ND	92.0	I dN	30	00027	28000	mg/Kg-dry	2-Butanone
980.0	ND	870.0	ND	970.0	ND	270.0	ND	670.0	ND	970.0	ND	870.0	I dN	- 00	00027	00000	mg/Kg-dry	1,3-Dichloropropene
6,043	ΔN	680.0	QN	860.0	I IND	950.0	ND	950.0	ND	850.0	ND ND	950.0	ND	650.0	27	26.0	mg/Kg-dry	1,2-Dichloropropane
980.0	QN.	870.0	QN	940.0	ND	270.0	ND	£70.0	UD	970.0	UD	870.0	UD N	0000		000	mg/Kg-dry	1,2-Dichloroethene
6,043	dN	650.0	ND	850.0	ND	950.0	ND	950.0	QN.	850.0	8.0	650.0	18.0	820.0	23	44.0	mg/Kg-dry	1,2-Dichloroethane
6,0043	QN	650.0	QN	850.0	ND	980.0	ND	960.0	ND	850.0	ND	950.0	ND	80.0	098	520	mg/Kg-dry	1,1-Dichloroethene
640.0	QN	650.0	QN	850.0	ND	960.0	ND	960.0	ND	850.0	ND	0.039	ND	410.0	071	3.4	mg/Kg-dry	
6,00	I I I	950.0	ND N	850.0	ND	960.0	ND	960.0	ND	850.0	UN ND	0.039	ND	250.0	29	1.1	mg/Kg-dry	1,1-Dichloroethane
640.0	I I I	950.0	UD	850.0	UN ND	950.0	ND	950.0	ND	850.0	- AN	0.039						1,1,2-Trichloroethane
540.0	GN	0.039	I dN	850.0	ND ND	980.0	ND	980.0	ND		UN UN		UN CN	63000.0	31	75.0	mg/Kg-dry	1,1,2,2-Tetrachloroethane
BIL	Result Q		Result Q		Result		Result			860.0		650.0	UN UNCOVI	4.1	420	420	mg/Kg-dry	1,1,1-Trichloroethane
									Result		Result		Result Q		2.5.00222022	and the second	1 100	
	8-10		18-2	.21.			-8		11-6		13-		13-1	Groundwater			Units	Analyte
2	2-8S	12	Z-8S	-20			88		-BS	LED	I-8S		I-8S	Migration to	Industrial	Residential	- (575,71)	-7-1 V
		Sb	d digasa i	8 GI əlqm	Sa													

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

NV - No value established by De Minimis Table, will be determined by Risk Assessi ND - Not Detected above the Reporting limit.

Johns Manville-Riverside Parcels Table 6. PAH Concentrations in Subsurface Soil

99611 # 4AV

2400.0	ND	€₽00.0		0,000		4400.0	000000	0.0250	61.0	0400.0	ΙD	6500.0	ND	1400.0	ND	007	98000	2300	mg/Kg-dry	Pyrene
2400.0	ND	6400.0				4400.0	L E100.0	0.0250	760.0	0400.0	ND	9800.0	ND	1400.0	ND	7400	000019	23000	mg/Kg-dry	Phenanthrene
2400.0	ND	€₽00.0		0.0040		4400.0	ND	0.0250	0.025	0400.0	ND	6600.0	ND	1400.0	ND	4600.0	180	3.6	mg/Kg-dry	Naphthalene
2400.0	ND	€₽00.0	L 100.	0.0040		4400.0	ND	0.0250	640.0	0400.0	ND	9500.0	ND	1400.0	ND	2.3	67	31.0	mg/Kg-dry	Indeno(1,2,3-cd)pyrene
2400.0	ND	6400.0		0400.0		4400.0	ND	0.0250	L 310.0	0,0040	ND	6600.0	ND	1400.0	ND	06	00029	2900	mg/Kg-dry	Fluorene
2400.0	ND	6400.0	900.			4400.0	L E100.0	0.0250	91.0	0400.0	ND	6600.0	ND	1400.0	ND	3200	30000	2300	mg/Kg-dry	Fluoranthene
2400.0	ND	6,00,0	ND	0400.0	ND	4400.0	ND	0.0250	L 10.0	0,000	ND	9600.0	ND	1400.0	ND	62.0	2.9	310.0	mg/Kg-dry	Dibenzo(a,h)anthracene
2400.0	ND	6,00.0	L 600.	0.0040	ND	4400.0	ИD	0.0250	680.0	0400.0	ND	6600.0	ND	1400.0	ND	21	2900	91	mg/Kg-dry	Chrysene
2400.0	ND	6400.0	L 100.0	0,0040	ND	4400.0	ND	0.0250	9£0.0	0,0000	ND	6500.0	ND	1400.0	ND	6.9	790	3.1	mg/Kg-dry	Benzo(k)fluoranthene
2₽00.0	ND	6,00,0	L 100.	0.0040	ND	4400.0	ND	0.0250	140.0	0.0040	ND	6600.0	ND	1400.0	ND	82000	23000	0021	mg/Kg-dry	Benzo(g,h,i)perylene
0.0120	ND	0.0130	ND	0.0120	ND	0.0130	ND	0970.0	L 180.0	0.0120	ND	0.0120	ND	0.0120	ND				mg/Kg-dry	Benzo(e)byrene
£800.0	ND	9800.0	L 300.0	1800.0	ND	6800.0	ND	0160.0	91.0	1800.0	ND	8700.0	ND	1800.0	ND				mg/Kg-dry	Benzo(b-k)fluoranthene
2400.0	ND	6400.0	300.0	0.0040	ND	4400.0	ND	0.0250	0.12	0,0040	ND	9600.0	ND	1400.0	ND	17.0	58	31.0	mg/Kg-dry	Benzo(b)fluoranthene
2400.0	ND	6400.0	L 600.0	0.0040	ND	4400.0	ΠD	0.0250	640.0	0,0040	ND	9500.0	ND	1400.0	ND	7.4	6.2	310.0	mg/Kg-dry	Benzo(a)pyrene
2400.0	ND	€400.0		0.0040		4400.0	ND	0.0250	0.12	0,0040	ND	6600.0	ND	1400.0	ND	12.0	58	31.0	mg/Kg-dry	Benzo(a)anthracene
0.0042	ND	6,00.0	E-04 J	0,000	ND	4400.0	ΠD	0.0250	U 20.0	0,0040	ND	9500.0	ND	1400.0	ND	7200	000019	23000	mg/Kg-dry	Anthracene
2400.0	ND	6400.0	ND	0400.0	ND	4400.0	ND	0.0250	L 810.0	0,0040	ND	0.0039	ND	1400.0	ND	97	75000	4300	mg/Kg-dry	Acenaphthylene
2400.0	ND	6400.0	ND	0400.0	Control of the contro	4400.0	ND	0.0250	ND	0,0040	ND	6500.0	ND	1400.0	ND	97	00099	0014	mg/Kg-dry	Acenaphthene
2 RL) lluse	BL F	Q ilusə	BL F	Result Q	BL R	Result C	RL	Result Q	RL	Result Q	BL	Result Q	BL R	Result					
.8	-9	.(1-8	17	11-01		9-7	101-8		13,	-11	.1	3-5	.17	3-	Groundwater	DeMinimis	DeMinimis	2000	as Coming a
L-8	S	9	·8S	9	-8S	7	-8S	£-	·BS	2-	as se	FD	1-8S	1-1	88	Migration to	Industrial	Residential	units	elylenA
							Depth bgs	ple ID &	San											

Comparison values taken from Table §60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value. Result exceeds the Residential De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessment.

Johns Manville-Riverside Parcels Table 6. PAH Concentrations in Subsurface Soil

99611 # 4AV

	€ 1 00.0 L S00.0		0.00 8400.0		0400.0	400.0	8500.0	ΙD	0.0220	L E10.0	0400.0	ND	004	28000	2300	mg/Kg-dry	Pyrene
					0400.0	L E00.0	8600.0	ND	0.0220	L 600.0	0400.0	ND	7400	000019	23000	mg/Kg-dry	Phenanthrene
	ND 0.0043		QN €≯00.0		0400.0	ND	8600.0	ND	0.0220	L 400.0	0400.0	ND	4600.0	180	3.6	mg/Kg-dry	Naphthalene
	ND 0.0043		00.0 E 1 00.0		0400.0	U.00.0	8500.0	ND	0.0220	ND	0400.0	ND	2.3	56	31.0	mg/Kg-dry	Indeno(1,2,3-cd)pyrene
	ND 0.0043		QN 8400.0		0400.0		8600.0	ND	0.0220	ND	0400.0	ND	06	00049	2900	mg/Kg-dry	Fluorene
	€400.0 L S00.0		00.0 8400.0		0400.0		8£00.0		0.0220		0400.0	ND	3200	30000	2300	mg/Kg-dry	Fluoranthene
	ND 0.0043		00.0 8400.0		0400.0	ND	8500.0	ND	0.0220	ND	0400.0	ND	62.0	2.9	310.0	mg/Kg-dry	Dibenzo(a,h)anthracene
	€400.0	400.0 L 40				L 600.0			0.0220	L 110.0	0400.0	ND	21	2900	91	mg/Kg-dry	Chrysene
	ND 0.0043	\$00.0 L €0				L S00.0			0.0220	ND	0400.0	ND	6.9	790	3.1	mg/Kg-dry	Benzo(k)fluoranthene
	ND 0.0043		00.0 8400.0		0400.0	U S00.0	8600.0	ND	0.0220	ND	0400.0	ND	82000	23000	0071	mg/Kg-dry	Benzo(g,h,i)perylene
	0.0130 dN		O.0130 ND		0.0120		0110.0		0990.0	ND	0.0120	ND				mg/Kg-dry	Benzo(e)pyrene
	3800.0 L £00.0		00.0 8800.0			L 900.0			0.0440	L 810.0	1800.0	ND				mg/Kg-dry	Benzo(b-k)fluoranthene
	ND 0.0043		0.00 8400.0		0400.0		8600.0		0.0220	L E10.0	0400.0	ND	17.0	67	61.0	mg/Kg-dry	Benzo(b)fluoranthene
	E400.0 L 100.0		00.0 8400.0			L 600.0			0.0220	L 700.0	0400.0	ND	7.4	2.9	310.0	mg/Kg-dry	Benzo(a)pyrene
	ND 0.0043		0.0043 0.00			L \$00.0			0.0220	L 310.0	0400.0	ND	12.0	58	31.0	mg/Kg-dry	Benzo(a)anthracene
	9E-04 J 0.0043	The second second second			0400.0		8600.0	ND	0.0220	L 400.0	0400.0	ND	7200	000019	23000	mg/Kg-dry	Anthracene
	ND 0.0043		0.0043 9E-0		0400.0		8600.0		0.0220	ND	0400.0	ND	97	00097	4300	mg/Kg-dry	Acenaphthylene
	ND 0.0043		J.0043 NE		0400.0		8600.0		0.0220	ND	0400.0	ND	97	00099	0014	mg/Kg-dry	Acenaphthene
Result Q RL	Result Q RL	חונ ס אד	RL Resi	Result Q	I BL	Result	צר	Result	RL	Result	RL	Result Q					
101-8	.8-9	10-12		191-41	15.	-01	.7	12-1	.8	3-9	'8	1-91	Groundwater	DeMinimis	DeMinimis	eville	as funited
91-8S	SB-15	5B-14		SB-13	11.	·8S	01	-SS	6-	as	8	-88	Migration to	Industrial	Residential	stinU	Analyte
				& Depth bgs	ol aldmi	es											

Result exceeds the Residential De Minimis value. Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value.

Result exceeds the Migration to Groundwater value.
Reporting limit exceeds the most restrictive De Minimis value.

NV - No value established by De Minimis Table, will be determined by Risk Assessi ND - Not Detected above the Reporting limit.

Johns Manville-Riverside Parcels Table 6. PAH Concentrations in Subsurface Soil

99611 # 9AV

		Residential	leistaubal	ot aniteaniM	3	۷۱-	do	U3 Z	43			& Depth		00			10	- 00
Analyte	stinU	The Agent of the A		Migration to Groundwater		12.	-	15'-	-6 8S			101	.SI SB		-81 SB			.22
					Result	אר פר	Result	ט אר	Result	I BL	Result	O BL	Result	RL RL	Result		Result	BL RL
bythene	mg/Kg-dry	4100	00099	97	ND	800.0		6800.0	ND	6700.0		6700.0	The second second	800.0	ND	3800.0		60.0
phthylene	mg/Kg-dry	4300	00094	97	ND	800.0	ND	6800.0	ND	6700.0	ND	6700.0		800.0	ND	3800.0		60.0
eueor	mg/Kg-dry	23000	000019	7200	ND	800.0	ND	6800.0	ND	6700.0	ND	6700.0		800.0		3800.0		60.0
(a)anthracene	mg/Kg-dry	31.0	67	12.0	ND	800.0	ND	6800.0	ND	6700.0		6700.0 L		800.0		3800.0		60.0
(s)bλιeue	mg/Kg-dry	610.0	2.9	7.4	6400.0	800.0	ND	6800.0	ND	6700.0	1700.0	6700.0 L		800.0		3800.0		60.0
(b)fluoranthene	mg/Kg-dry	61.0	67	17.0	6400.0	800.0	ND	6800.0	ND	6700.0	6700.0	6700.0 L	_	800.0	ND	3800.0		60.0
(p-k)Įlnoranthene	mg/Kg-dry		2 2 5 9		6400.0	10.016	ND	710.0	ND	910.0	7800.0	810.0 L	ND	910.0		710.0	12.0	31.0
(e)bλιeue	mg/Kg-dry				ND	0.025	ND	0.025	ND	₽20.0	ND	420.0	ND	420.0		0.025	ND	0.27
(g,h,i)perylene	mg/Kg-dry	0071	23000	82000	ND	800.0	ND	6800.0	ND	6700.0	4200.0	6700.0 L	ND	800.0		3800.0	280.0	60.0
(k)fluoranthene	mg/Kg-dry	3.1	290	6.9	ND	800.0	ND	6800.0	ND	6700.0		6700.0		800.0		3800.0		60.0
əue	mg/Kg-dry	91	2900	12	ND	800.0	ND	6800.0	ND	6700.0	ND	6700.0		800.0		3800.0	11.0	60.0
zo(a,h)anthracene	mg/Kg-dry	310.0	6.2	62.0	ND	800.0	ND	6800.0	ND	6700.0	₽00.0	6700.0 L		800.0		3800.0	ND	60.0
euequ	mg/Kg-dry	2300	30000	3200	6400.0	800.0	ND	8800.0	ND	6700.0	3300.0	6700.0 L	ND	800.0		3800.0	61.0	60.0
əu	mg/Kg-dry	2900	00049	06	ND	800.0	ND	£800.0	ND	6700.0	ND	6700.0	ND	800.0	ND	3800.0	ND	60.0
(1,2,3-cd)pyrene	mg/Kg-dry	61.0	58	2.3	1400.0	800.0		£800.0	ND	6700.0	8400.0	6700.0 L	ND	800.0	ND	3800.0	£70.0	60.0
palene	mg/Kg-dry	9.8	180	\$600.0	ND	800.0	ND	£800.0	ND	6700.0	ND	6700.0	ND	800.0	ND	3800.0	9£0,0	60.0
nthrene	mg/Kg-dry	23000	000019	7400	9100.0	800.0		£800.0		6700.0	0.0024	6700.0 L	ND	800.0	ND	3800.0	1.0	60.0
e	mg/Kg-dry	2300	00089	400	5200.0	800.0	ND	8800.0	ND	6700.0	6900.0	6700.0 L	ND	800.0	ND	3800.0	71.0	60.0

Result exceeds the Residential De Minimis value. Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Industrial De Minimis value.

Result exceeds the Migration to Groundwater value. Reporting limit exceeds the most restrictive De Minimis value.

 $\ensuremath{\mathsf{NV}}$ - No value established by De Minimis Table, will be determined by Risk Assessi ND - Not Detected above the Reporting limit.

Johns Manville-Riverside Parcels Table 7. RCRA 8 Metals Concentrations in Subsurface Soil

6.2	0 80 11 2		0 034		1 1800 0		1 2100		0.000		1 0000	31	100001	390	ma/Ka-dry	Ver
6'7 6		2.0 1.5	L 8.1	6.1	J. 2.1	2.3	J. 3.1	2.2	L T.r	2.4	L 6.1	5.2	10000	390	mg/Kg-dry	muinəl
		2.0 16	91	6.1	11	2.3	15	2.2	15	2.4	11	270	1000	007	mg/Kg-dry	pe
6.2		2.0 15	18	6.1	カレ	2.3	tl	2.2	91	2.4	91	2000000000	10000001	120000	mg/Kg-dry	muimor
S.I L I.		31.0 08.0	U.12 J	87.0	L 81.0	16.0	L 12.0	88.0	L S1.0	96'0	U 21.0	3.7	008	32	mg/Kg-dry	muimb
6.2 02		2.0 130	120	6.1	110	2.3	120	2.2	120	2.4	210	1600	360000	12000	mg/Kg-dry	rium
6.2		2.0 9.9	11	6.1	9.8	2.3	0.6	2.2	6.8	2.4	5.7	8.3	72	65.0	mg/Kg-dry	oine
sult Q RL	יוג ס אר אפ	Rest Rest	Result	BL	Result Q	RL	Result Q	BL	Result C	BL	Result Q					
.01-8	18-20'	.41	-9L	١0،	1-8	.1	1-6	12.	-21	19,	13-	Groundwater	DeMinimis	DeMinimis	271112	as from a
SB-22	1Z-8S	-20	-BS	61	-BS	81	-BS	Q ± LD	I-BS	21	-BS	Migration to	Industrial	Residential	stinU	Analyte
			sb	Depth b	ռple ID &	Sai				**			11-0-12-12-12-12-12-12-12-12-12-12-12-12-12-			
190.0 910.0 140		20.0 610.0	150.0	910.0		410.0	360.0	0.020	82.0	810.0	620.0	1.2	019	23	mg/Kg-dry	rcury
L S1.0 8.5 L 810			U 310.0		L 110.0	2.4	ND	2.6	02.0	2.3	ND	31	10000	390	mg/Kg-dry	/er
L 3.1 3.5 L 8.		1.1 8.2	J 7.1	2.3	L I.I	2.4	L 4.1	2.6	U 04.0	2.3	U 0.1	5.2	10000	390	mg/Kg-dry	muinə
72 8.5 71		2.8 14	61	2.3	15	2.4	11	2,6	280	2.3	14	270	1000	007	mg/Kg-dry	pı
22 9.2 02		2.8 15	22	2.3	91	2.4	21	2.6	5.9	2.3	91	2000000000	10000001	120000	mg/Kg-dry	wnimo.
L 19.0 0.1 L 9S.	0 78.0 L 6	21.0 1.1	U.24 J	16.0	U.24 J	96.0	L 74.0	1,1	6.3	16.0	U 91.0	Z.T	008	37	mg/Kg-dry	unimi
90 2.6 230	2.2	2.8 130	220	2.3	130	2.4	150	97	١,700	2.3	110	1600	360000	12000	mg/Kg-dry	wnį
12 2.6 11		1010	12	2.3	8.8	2.4	2.6	9.2	0.4	2.3	8.6	8.2	7.2	66.0	mg/Kg-dry	oine
sult Q RL Result Q	יונ ס אר אי	S RL Resi	Result Q	ו אר	Result G	I BL	Result	I BL	Result C	Br Br	Result C					
18-9	10-12	19,	-71	15.	-01	14.	12-	.8	-9	181	-91	Groundwater	DeMinimis	DeMinimis	cours.	Analyte
-BS SI-BS	\$1-8S		-88		-88	10	SS	6-	BS	8-	as	Migration to	Industrial	Residential	stinU	atylenA
		sß	k Depth b	3 Gl əlqn	San											
650.0 610.0 140	0 810.0 4	810.0	750.0	750.0	24.0	710.0	260.0	220.0	1480.0	0.023	140.0	17	010	07	шдүкд-дгу	(max
043 J 2.5 0.14 J	0 2.2 6 70	00.0 8.00	L 370.0		L 4.1		L 890.0	2,3	0.022		L 810.0	31	00001	23 230	mg/Kg-dry	ver rcury
L 9.1 3.5 L 0.9		2.5 1.3	U 8.1	1.8	3.6		L 4.1	2.3	L 0.1	1.2	L 79.0	2.2			mg/Kg-dry	
24 2.5 42		71 3.2	74	1.8	200	2.5	91	2.3	91	1.2		270	10000	390	mg/Kg-dry	muinə
CV 30 1 10									_				1000	007		рі
																unimo.
52 2.5 25																unimb
33 1 1.0 1.0																uni
30 2.6 320 33 J 1.0 1.0 35 Z.5 320													22	66.0	vib-pX/pm	oine
30 2.5 320 30 2.5 320 31 0.1 0.1 0.5 32 3.2 20		isval la lu											CHIMINA	CHIMINAG	10 7.0	
sulf Q RL Resulf Q 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1		0	1-4-						3"	1	3"	Groundwater	siminiMe(รมนด	Analyte
30 2.5 320 30 2.5 320 31 0.1 0.1 0.5 32 3.2 20	10-12.		7-7 SB		8S		88		-BS		88	Migration to	minenniii	Residential	- 71 - 11	
	2.2 2.2 2.3 0 68.0 2.2) r 2	2.5 160 0.27 J 0 170 0.27 J 0 1	Result Q RL RL	RL Result Q RL RL RL RL RL RL RL	Result Q RL 3.1 2.5 1.0 0.27 <td> RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL REsult Q RL RL RL RL RL RL RL </td> <td>Result Q RL Result Q RL RL</td> <td> State Result Carte Result Carte Result Carte C</td> <td>Result Q RL Result Q RL <</td> <td> RL Result Q RL RL RL RL RL RL RL </td> <td>Result Q RL Result Q RL <</td> <td>Groundwater Result Q RL Result</td> <td> 10-10 1</td> <td>DeMinimis DeMinimis Groundwater 3-4" 3-4" 3-4" 3-4" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 8</td> <td> Particular DeMinimis Dem</td>	RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL Result Q RL REsult Q RL RL RL RL RL RL RL	Result Q RL RL	State Result Carte Result Carte Result Carte C	Result Q RL <	RL Result Q RL RL RL RL RL RL RL	Result Q RL <	Groundwater Result Q RL Result	10-10 1	DeMinimis DeMinimis Groundwater 3-4" 3-4" 3-4" 3-4" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 4-6" 10-13" 8-10" 8	Particular DeMinimis Dem

Mercury

Silver

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12

390

Result exceeds the Residential De Minimis value.

Result exceeds the Industrial De Minimis value.

Result exceeds the Migration to Groundwater value.

Reporting limit exceeds the most restrictive De Minimis value.

mg/Kg-dry

ND - Not Detected above the Reporting limit.

J - Estimated Value NV - No value established by De Minimis Table, will be determined by Risk Assessment.

640.0 810.0 440.0

1.5

31

019

10000

910.0 | \$42.0 | \$10.0 | \$450.0 | \$710.0 | \$440.0 | \$710.0 | \$450.0 | \$10.0 | \$040.0 | \$710.0 |

6.2 L S1.0 E.S L 850.0 0.2 L 180.0 6.1 L 1800.0 E.S L 710.0 S.S L S20.0 4.S L 440.0

Johns Manville-Riverside Parcels Table 8. VOC Concentrations in Groundwater

99611#437

3.0		ND	3.0		ND	3.0	T	ND	0.6		ND	0.8		ND	10000	∏/6rl	Xylenes, Total
0.1		ΠD	0.1		ND	0.1		ND	0.1		ND	0.1		ND	7	7/6rl	Vinyl chloride
0.1		ΠD	0.1		ND	0.1		ND	0.1	1	ND	0.1	T	ND	G	7/6rl	Trichloroethene
0.1		ND	0.1		ND	0.1	T	ND	0.1		ND	0.1	T	ND		7/6rl	trans-1,3-Dichloropropene
0.1		ΠD	0.1		ND	0.1		ND	0.1		ND	0.1		ND	100	7/6rl	trans-1,2-Dichloroethene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	1000	7/6rl	loluene
2.0		ND	0.2		ND	0.2		ND	0.2		ND	0.2		ND	g	7/6rl	Tetrachloroethene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	100	1/6rl	Styrene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	1.0		ND		7/6rl	o-Xylene
0.3		ND	0.3		ND	0.8		ND	0.3		ND	0.8		ND	g	∏/6rl	Methylene chloride
0.2		ND	0.2		ND	0.2		ND	0.2		ND	2.0		ND		7/6rl	enəlγX-q,m
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	002	7/6rl	Ethylbenzene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND		7/6rl	Dibromochloromethane
0.1	- 1	ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND		7/6rl	cis-1,3-Dichloropropene
0.1		ND	0.1		ND	0.1	1	ND	0.1		ND	0.1		ND	04	7/6rl	eis-1,2-Dichloroethene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	190	7/6rl	Chloromethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	61.0	7/6rl	Chloroform
0.1		ND	0.1		ND	0.1	Ī	ND	0.1		ND	0.1		ND	21000	7/6rl	Chloroethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	100	7/6rl	Chlorobenzene
0.1		ND	0.1		ND	0.1	IJ	ND	0.1		ND	0.1		ND	9	∏/6rl	Carbon tetrachloride
2.5		ND	2.5		ND	2.5		ND	2.5		ND	2.5		ND	1000	7/6rl	Carbon disulfide
0.1	12	ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	7.8	7/6rl	Bromomethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	6.8	7/6rl	Bromoform
0.1		ND	0.1		ND	0,1		ND	0.1		ND	0.1		ND	0.12	hg/L	Bromodichloromethane
0.1	-	ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	9	7/6rl	Benzene
50		24	20	r	11	20		ND	20		ND	20		ND	22000	7/6rl	Acetone
0.3		ND	0.3		ND	0.3		ND	0.8		ND	0.3		ND	2000	7/6rl	4-Methyl-2-pentanone
0.3		ND	0.8		ND	0.3		ND	0.6		ND	0.3		ND		7/6rl	Z-Hexanone
0.3		6.8	0.8		ND	0.3		ND	0.6		ND	0.3		ND	0017	∏/6rl	S-Butanone
0.2		ND	2.0		ND	0.2		ND	0.2		ND	0.2		ND		7/6rl	1,3-Dichloropropene
2.0		ND	0.2		ND	2.0		ND	0.2	Т	ND	0.2		ND	9	∏/6rl	1,2-Dichloropropane
0.2		ND	0.2		ΠN	0.2		ND	0.2		ND	0.2		ND		7/6rl	1,2-Dichloroethene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	9	7/6rl	1,2-Dichloroethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	L	7/6rl	1,1-Dichloroethene
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	2.4	7/6rl	1,1-Dichloroethane
0.1		ND	0.1		ΠD	0.1		ND	0.1		ND	0.1		ND	9	7/6rl	1,1,2-Trichloroethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	790.0	7/6rl	1,1,2,2-Tetrachloroethane
0.1		ND	0.1		ND	0.1		ND	0.1		ND	0.1		ND	200	7/6rl	1,1,1-Trichloroethane
BL	Ø	Result	BL	Ø	Result	RL	Ø	Result	RL	Ø	Result	ВГ	Ø	Result			
LED.	γ-Λ	VMT	7-	MV	NT	£-	M	NT	2.	W	ΝT	1.	M		SiminiM 90	stinu	Analyte

Comparison values taken from Table §60-3B, De Minimis Table - effective 5/1/12

Result exceeds the De Minimis value.

Reporting limit exceeds the De Minimis value.

NV - No value established by De Minimis Table, will be determined by Risk Assessment. ND - Not Detected above the Reporting limit.

Table 9. PAH Concentrations in Groundwater Johns Manville-Riverside Parcels

99611 # 9AV

FD	D-W	/MT		P-W	MT	£-	W	/T	2.	·W	NT	Į.	WN	11		7.	-4. ·1- · · · ·
אר	-		RL	Ø				Result		Ø		RL	-	Result	De Minimis	sijun	Analyte
090.0		ND	090.0		ND	090.0		ND	090.0		ND	090.0		ND	370	7/6rl	ycenaphthene
080.0	Ш	ND	080.0	o F	ND	080.0		ND	080.0		ND	080.0		ND	370	7/6rl	ycenaphthylene
090.0		ND	090.0		ND	090.0		ND	090.0	1	ND	090.0		ΠD	11000	7/6rl	Anthracene
0,040	П	ND	040.0		ND	040.0	-0	ND	040.0	(1)	ND	0.040		ND	620.0	⊓/6rl	senzo(a)anthracene
080.0		ND	080.0		ND	080.0		ND	080.0		ND	080.0		ND	2.0	7/6rl	genzo(a)pyrene
060.0		ND	060.0		ND	060.0		ND	060.0		ND	060.0		ΠD	620.0	7/6rl	Senzo(b)fluoranthene
11.0		ND	11.0		ND	11.0		ND	11.0		ND	11.0		ND		7/6rl	Senzo(b-k)fluoranthene
080.0		ND	080.0		ND	080.0		ND	080.0		ND	080.0		ND	1100	7/6rl	genzo(g,h,i)perylene
030.0		ND	090.0		ND	090.0		ND	0.050		ND	090'0	П	ND	62.0	7/6rl	senzo(k)fluoranthene
030.0	П	ND	090.0	9	ND	0.050		ND	090.0	П	ND	0.050		ΠD	2.9	7/6rl	yukseue
080.0		ND	080.0		ND	080.0		ND	080.0	П	ND	080.0		ND	6200.0	T/6rl	Oibenzo(a,h)anthracene
070.0	\Box	ND	070.0		ND	070.0		ND	070.0		ND	070.0		ΔN	1200	7/6rl	-luoranthene
090'0		ND	090.0		ND	050.0	-	ΔN	090.0		ND	090.0	П	ND	240	7/6rl	-luorene
070.0		ND	070.0	F	ND	070.0		ΔN	070.0		ND	070.0		ND	620.0	7/6rl	ndeno(1,2,3-cd)pyrene
070.0		ND	070.0		ND	070.0	r	0,040	070.0		ND	070.0		ND	41.0	7/6rl	/sphthalene
080.0	П	ND	080.0		ND	080.0		ND	080.0		ND	080.0	Т	ND	11000	7/6rl	henanthrene
0.050		ND	090.0		ND	0.050		ND	0.050		ND	0.050		ND	180	7/6rl	yrene

:SƏIONI

Comparison values taken from Table \$60-3B, De Minimis Table - effective 5/1/12 Result exceeds the De Minimis value.

Reporting limit exceeds the De Minimis value.

ND - Not Detected above the Reporting limit.

NV - No value established by De Minimis Table, will be determined by Risk Assessment.

J - Estimated Value

Table 10. RCRA 8 Metals Concentrations in Groundwater Johns Manville-Riverside Parcels

VRP # 11966

Analyte	opica:	Do Minimic	E	TMW-1	1	TN	FMW-2	2	T TN	TMW-3	3	ML	TMW-4		TMW-4 FD	4 FL	_
Alialyte	CILIES	S WILLING	Result Q	Ø	RL	Result	Ø	RL	Result Q	Ø	RL	Result (C	짐	Result C		牊
Arsenic	hg/L	10	ND		5.0	3.4	7	5.0	28	Н	5.0	Q	H	5.0	0.86		5.0
Barium	hg/L	2000	48		5.0	140		5.0	096		5.0	110	H	5.0	110		5.0
Cadmium	hg/L	2	0.11	ſ	2.0	0.14	5	2.0	0.24	7	2.0	0.72	5	2.0	0.51	_	2.0
Chromium	l µg/L	22000	0.35	7	5.0	1.4	5	5.0	6.4		5.0	1.3	5	5.0	0.4		5.0
Lead	hg/L	15	0.16	ſſ	5.0	0.073	5	5.0	0.26	5	25.0	QN		25.0	QN	C	25.0
Selenium	hg/L	20	QN		5.0	2	5	5.0	QN		5.0	0.97	5	5.0	0.86		5.0
Silver	hg/L	180	QN		5.0	QN		5.0	QN	H	5.0	2	H	5.0	2	Ĺ	5.0
Mercury	hg/L	2	QN		0.2	QN		0.2	Q		0.2	2	H	0.2	2	Ĺ	0.2

Comparison values taken from Table §60-3B, De Minimis Table - effective 5/1/12

Result exceeds the De Minimis value.
Reporting limit exceeds the De Minimis value.
ND - Not Detected above the Reporting limit.
NV - No value established by De Minimis Table, will be determined by Risk Assessment.

J - Estimated Value

Table 11. Arsenic Background Concentrations in Surface Soil Johns Manville-Riverside Parcels VRP # 11966

		7.												Sa	mple ID and	Depth	bgs									
		Residential	Industrial	Migration to	BG-	1	BG-1	-D	BG-	2	BG-	-3	BG	-4	BG-	-5	BG-	-6	BG-7	7	BG-		BG	j-9	В	G-10
Analyte	Units	1.45.50.00.00.00.00.00.00.00.00.00.00.00.00	to a serie and seed to be selected about the	Groundwater			(0-2'		(0-2	(")	(0-2	2')	(0-	2')	(0-2	')	(0-2	2')	(0-2')	(0-2	')	(0-	2')	(0-2')
	1.		5.3300,000	200000000000000000000000000000000000000	Result Q	RL	Result C	RL	Result Q	RL	Result Q	RL	Result Q	RL	Result Q	RL	Result C) RL	Result	Q RL						
Arsenic	mg/Kg-dry	0.39	27	5.8	7.1	2.2	6.9	2.3	7.3	2	7.2	2.0	6.1	2.1	6.6	2.0	6.3	2.1	17	2.0	7.8	2.5	10	2.3	12	2.4

Comparison values taken from Table §60-3B, De Minimis Table - effective 5/1/12

Result exceeds the Residential De Minimis value.


Result exceeds the Migration to Groundwater value.

FIGURES

Structures Resources, Inc. VRP #11966

	Constitution	Well Agent People	Oil Greenan	Ojje Genja Well Gran
	Went	1 × (8)	639	Surger St. Com.
	S COUNTY OF THE		621 3	
900) Qui		88M 599 608	651	720
(907)	BM GOBS	608 8 F	Oil Well	
SITE LOC	ATION	\$ 500	500 to 10 8	Oil
	+1			
		Oil Well BM/ GOS/	To the state of th	John John John John John John John John
	Briggs Briggs		553	Oil Well Well Well Ackson
	Gaging Sta &	SOJ OII Wen	ENNA	Jackson Ar High Sch
990	Light Street Control of the Control	brary Seath 2007	1 CO - 1	Water
	} 	Oil Well		Tanka 11-18
Traile Par			3 660	
Oil		622		
On One	Sewer State Openion	ge SMI	7	with the second
	Sewi Dispo	Neal Cart	St. Jose Sernin	phia con
	s and	To the second	Maplewood Sch	
TRAIL S BM	81		1 25 6 T	
S Creek Well-	+ (is N) No.			Olio Valley (College)
SOURCE:	hid 1 H	III NAMES II HE . I STATISTICAL	Masonic Homas	Oil Wells and
USGS		ville – Riverside Parcel 1 st Avenue		LTIAD
Parkersburg		d County, WV – VRP 11 LOCATION MAP	966	TRIAD ENGINEERING, INC. www.triadeng.com
DATE:		OJECT NO: 04-13-0402		FIGURE: 1
				3 3 5 C 6 3 TO 3

DATE: 2012

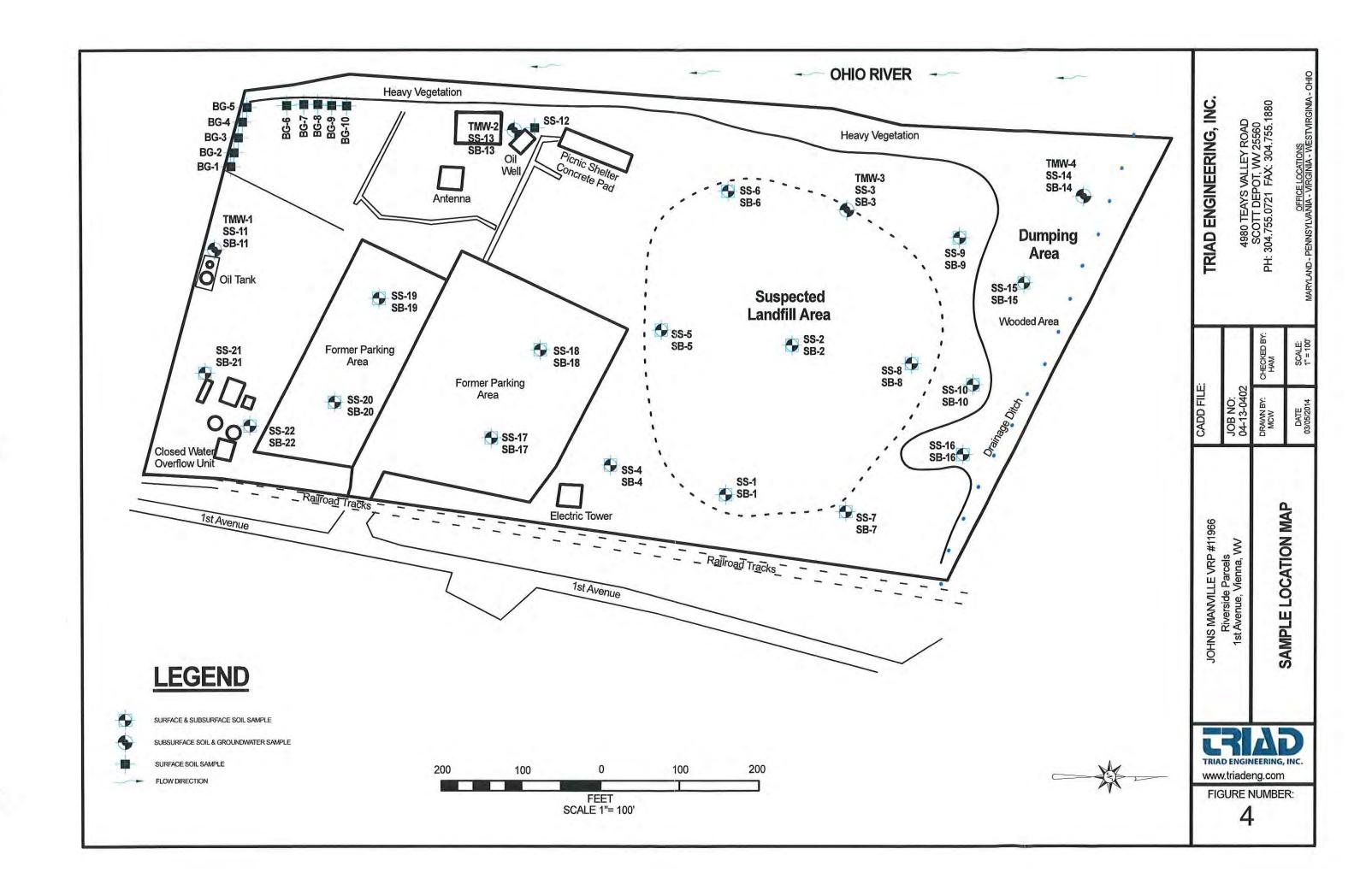
John's Manville – Riverside Parcels 1st Avenue Vienna, Wood County, WV AERIAL PHOTOGRAPH

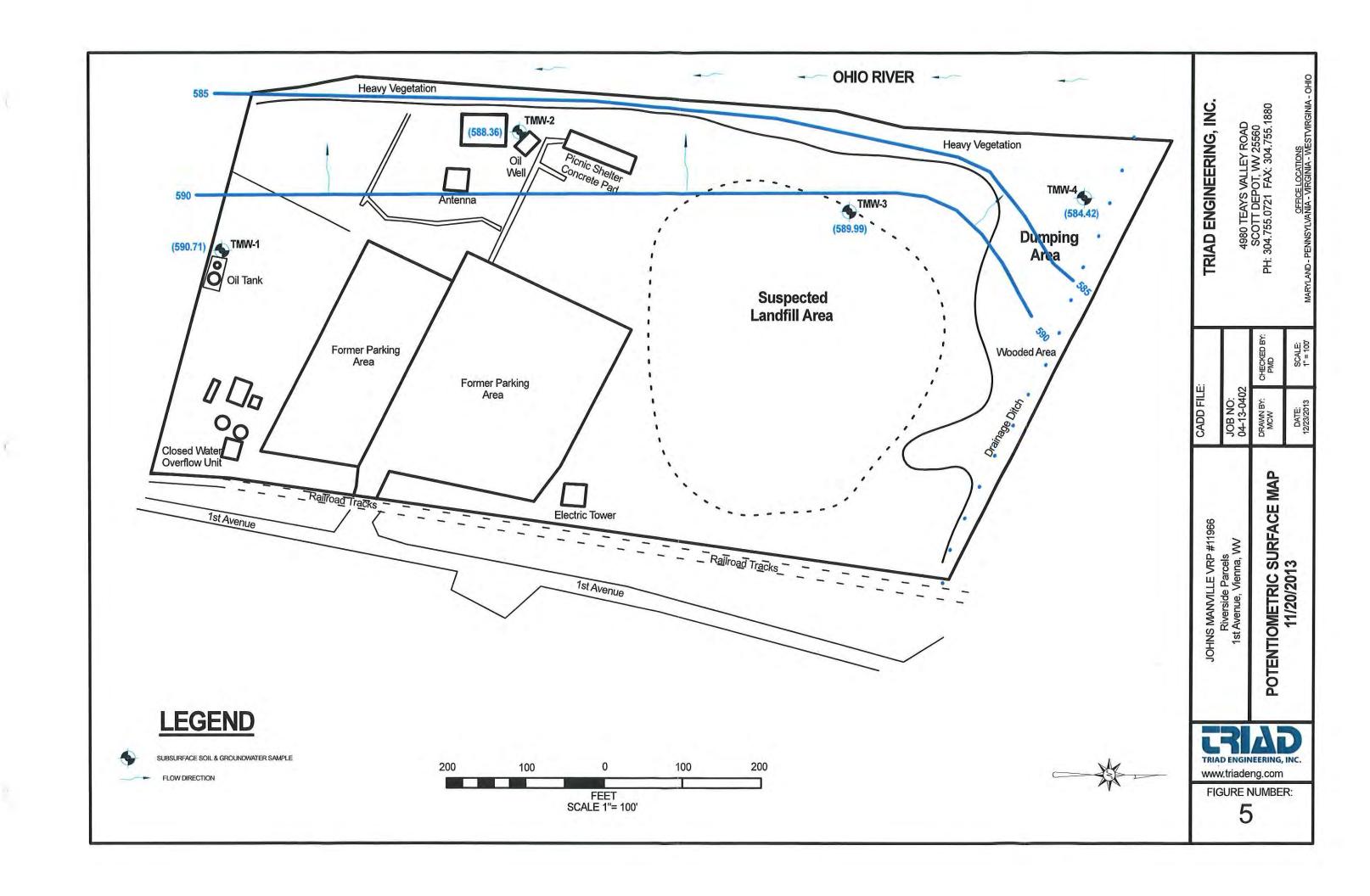
TRIAD PROJECT NO: 04-13-0402

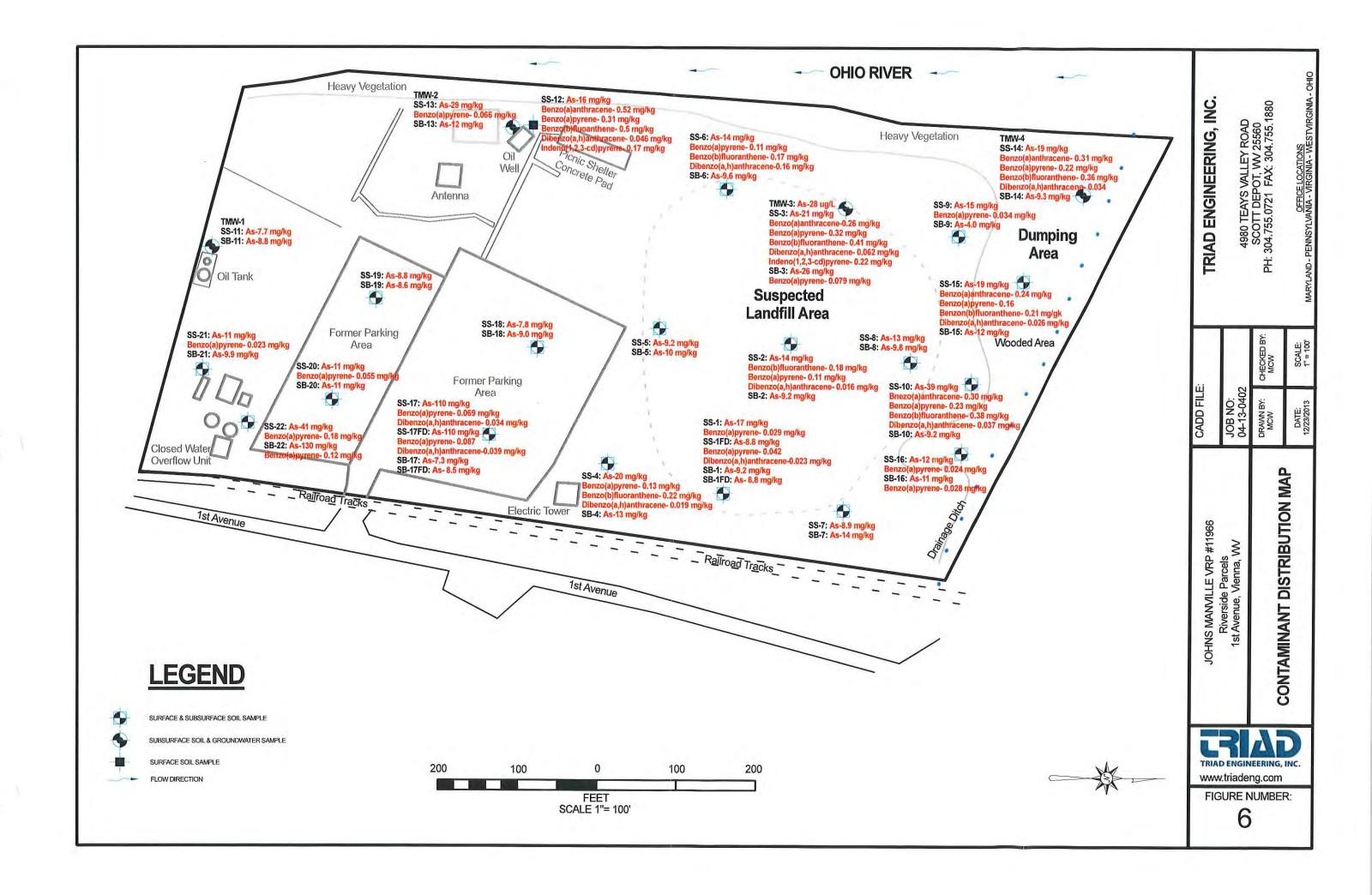
TRIAD ENGINEERING, INC. www.triadeng.com

FIGURE: 2

SOURCES	COPC	RELEASE	MEDIA	EXPOSURE PATHWAYS		RESIDENTIAL	INDUSTRIAL
					LOCATION	RECEPTOR	RECEPTOR
				particulate→inhalation 4.5	1 on-site	1-a	0-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8
				1-a	2 off-site	1-a	
			surface	ingestion 4 to 1	3 on-site	1-b,c	
		I	soil 1-b,c	1-b,c	4 off-site	, 210	
		11		dermal	5 on-site	1-b,c	
Surface	a. VOC			1-b,c	6 off-site		
✓ tanks	図 b. SVOC			volatilization→emissions to ambient air→inhalation	7 on-site		
drums	☑ c. metals/				8 off-site		
	inorganics			volatilization→infiltration to indoor air→inhalation	9 on-site		
☐ pipes/pumps ☐ pits/sumps	d. pesticides		subsurface		10 off-site		
□ buried waste	e. PCB		subsurface 2-b,c	ingestion 2-b,c		2-b,c	
	f. dioxins			2-0,C	12 off-site		
	g. other			dermal 2-b,c	13 on-site	2-b,c	
				Z-0,C	14 off-site		
			migration to grou	ndwater 1-b,c	on-site 2a	1-b,c	
		spill or		166	off-site 2a		
		leak	In the second	volatilization→emissions to ambient air→inhalation	/ 17 on-site		
		100	ground 1,2-c		18 off-site		
			water 1,2-0	volatilization→infiltration to indoor air→inhalation	19 on-site		
					20 off-site		
			domestic	ingestion	21 on-site		
. Subsurface	a. VOC	_	use		22 off-site		
tanks	_ ☑ b. SVOC ☑ c. metals/			dermal	23 on-site		
fill pipes	✓ c. metals/		tap		24 off-site		
transfer pipes	inorganics		water	volatilization→indoor air→inhalation	25 on-site		
dispenser pumps	d. pesticides				26 off-site		
buried waste	e. PCB			ingestion	27 on-site		
	f. dioxins				28 off-site		
	g. other		surface	dermal	29 on-site		
			water		30 off-site		
			sediments	inhalation	31 on-site		
					32 off-site		


CONCEPTUAL SITE MODEL John's Manville - Riverside Parcels 1st Avenue Vienna, Wood County, WV VRP# 11966


Figure No.


PREPARED MW DATE: 12-19-13

TRIAD ENGINEERING, INC.

TRIAD ENGINEERING, INC.
ST. ALBANS & MORGANTOWN, WV
WINCHESTER, HARRISONBURG, VA
PURCELLVILLE, VA
HAGARSTOWN, MD

APPENDIX 1
Boring Logs

		Johns Manville Riverside Parcels	R	7		BORING LOG B-1
Project	Numbe	er:04-13-0402	TRIAD ENGINE	ERING,	NC.	
		Location: N 39 20' 53.58" W 80 02' 22.45 Well Elevation:	5"			
Depth, feet	Symbol/USCS	Lithologic Description		PID (ppm)	Sample ID	Observations
1		Topsoil		0		
		Fiberglass		0	SS-1	
		, wo gue		0	SB-1	
5				0		
		Brown <u>SILTY CLAY,</u> moist with no odo	r.	0		
10		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0		
				0		
		Bottom of Test Boring at 12.0 ft.				
			-6 h			
15						
20						
						- 44
Comple	etion De	pth: 12 Remarks:				
Date S	tarted:	11/19/2013 SS-1 FD				
Date C	omplete	d: 11/19/2013 SB-1 FD				
Engine Driller:	tarted: omplete er/Geol	ogist: BAF Triad				

Project I	Name:	Johns Manville Riverside Parcels		RAI		BORING LOG B-2
Project I	Number	r:04-13-0402		NGINEERING, I	NC.	
		Location: N 39 20' 53.58" W 80 02' 2: Well Elevation:	2.45"			
Depth, feet	Symbol/USCS	Lithologic Description		PID (ppm)	Sample ID	Observations
		Topsoil		0		
		Glass		0		
10		Brown SANDY CLAY , moist with no	odor		SS-2	
		Bottom of Test Boring at 16.0 ft				
20						
Complet		oth: 16 Remarks:				
Date Sta	arted:	11/19/2013				
Date Co	mplete	d: 11/19/2013				
Enginee	er/Geolo	ogist: BAF				
Driller:		Triad			-	

Project	Name:	Johns Manville Riverside Parcels	314		BORING LOG B-3
Project	Numbe	er:04-13-0402 TRI	AD ENGINEERING,	INC.	
		Location: N 39 20' 53.58" W 80 02' 22.45" Well Elevation:			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
10-0		Topsoil			
			0	SS-3	
		Glass	0		
			0		
			0		
5		Brown SANDY CLAY , wet	0		
		Fiberglass	0		
			0	SB-3	
10			0	30-3	
10		Grey SANDY CLAY, wet, no odor	0		
			0		
-			0		
		Glass	0		
15		23.20	0		
		Bottom of Test Boring at 16.0 ft.	0	-	
		Bottom of Test Boring at 16.0 ft.			
20					
	etion De				
Date S	tarted: omplete	11/20/2013 ed: 11/20/2013			
	er/Geol				
Driller:		Triad			

		Johns Manville Riversion				BORING LOG B-4
Project	Numbe	er:04-13-0402	and the state of t	NGINEERING,	INC.	
		Location: N 39 20' 53. Well Elevation:	58" W 80 02' 22.45"			
Depth, feet	Symbol/USCS	Lithold	ogic Description	PID (ppm)	Sample ID	Observations
			Topsoil	0		
				0	SS-4	
			Fiberglass	0		
				0		
5				0	SB-4	
				0		
				0		
		Grey to black <u>CLAY</u> wi	th concrete debris, moist, no odor	0		
10				0		
				0		
				U		
		Bottom of	Test Boring at 12.0 ft.			
		10 277. 37.				
-						
15						
20						
Cerre	Alan D	onth: 40	Domorko			
Comple Date St		epth: 12 11/19/2013	Remarks:			
Date C						
Engine	er/Geol	ogist: BAF				
Driller:		Triad				

Projec	t Name:	Johns Manville Riverside Parcels				BORING LOG B-5
Project	Numbe	r:04-13-0402		IGINEERING	, INC.	
		Location: N 39 20' 53.58" W 80 02 Well Elevation:	2' 22.45"			
Depth, feet	Symbol/USCS	Lithologic Description		PID (ppm)	Sample ID	Observations
		Topsoil				
10		Brown <u>SANDY CLAY,</u> moist, n			SS-5	
		Bottom of Test Boring at 16	.0 ft.			
20						
Comp	etion De	epth: 16 Remarks:				
Date S	Started:	11/19/2013				
Date 0	Complete	ed: 11/19/2013				
Engine	eer/Geol	ogist: BAF				
Driller:		Triad				

Project Name	: Johns Manville Riverside Parcels	CRIA		BORING LOG B-6
Project Numb	er:04-13-0402	TRIAD ENGINEERING	, INC.	
	Location: N 39 20' 53.58" W 80 02' 22.45" Well Elevation:			
Depth, feet Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
	Topsoil	0		
	Brown SANDY CLAY, moist, no odor	0	SS-6	
	Brown <u>SANDY CLAY</u> , with fiberglass, no odd staining	r, no 0		
10	Fiberglass Fill	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SB-6	
15	Grey to brown <u>CLAYEY SILT</u> , very moist, no	0		
	Bottom of Test Boring at 16.0 ft.			
20				
Completion D	epth: 16 Remarks:			
Date Started:	11/20/2013			
Date Complet	red: 11/20/2013			MI
Engineer/Geo	ologist: BAF			
Driller:	Triad			

	ne: Johns Manville Riverside F		$3 \Delta $		BORING LOG B-7
Project Nur	mber:04-13-0402		ENGINEERING,	NC.	
1 1 1 1 1	Location: N 39 20' 53.58'	" W 80 02' 22.45"			
Depth, feet	Lithologi	c Description	PID (ppm)	Sample ID	Observations
1 - 1 - 1	Ţ	opsoil	0		
			0	SS-7	
	Brown SANDY (CLAY, moist, no odor	0		
			0	100	
			0		
5		0.440	0	. 1	
	Grey <u>SANDY C</u>	LAY, moist, no odor	0		
			0	SB-7	
			0		
			0		
10	Grey to brown SANI	DY CLAY, no odor, moist	0	4	
			0		
			Ų		
	Bottom of Te	est Boring at 12.0			
15			li e		
A STATE OF					
20					
20					
Cawaral at	Donth: 401D	amarka.			
Completion Date Starte		emarks:			
Date Comp	leted: 11/19/2013				
Engineer/G	eologist: BAF				
Driller:	Triad				

		Johns Manville Riversid	e Parcels	13			BORING LOG B-8
Project Nu	umbe	r:04-13-0402		TRIAD ENG	SINEERING, I	NC.	
		Location: N 39 20' 53. Well Elevation:	58" W 80 02' 22.4	45"		- Y	
Depth, feet	Symbol/USCS	Litholo	gic Description		PID (ppm)	Sample ID	Observations
			Topsoil		0		
		Brown <u>CLA</u>	<u>Y</u> with glass, no odor		0	SS-8	
		Brown <u>CLAY</u> with t	iberglass insulation, n	o odor	0		
5							
10		N	Recovery				
15							
10							
					0		
					0	SB-8	
		Drown CAND	Y CLAY, moist, no ode	or	0		
		BIOWII SAND	r CLAT, moist, no out	51	Ü		
					0		
20					0		
		Bottom of 1	est Boring at 20.0 ft.				1
Completic	on De	pth: 20	Remarks:				
Date Star	ted:	11/20/2013	Charles 190				
Date Com	nplete	d: 11/20/2013					
Engineer/ Driller:	Geolo	ogist: BAF Triad					
Diller.		Hidu					

Project I	Name:	Johns Manville Riverside F	Parcels	दर	A		BORING LOG B-9
Project N	Numbe	er:04-13-0402		TRIAD EN	GINEERING, I	NC.	
		Location: N 39 20' 53.58' Well Elevation:	W 80 02' 22.45	5"			
Depth, feet	Symbol/USCS	Lithologie	c Description		PID (ppm)	Sample ID	Observations
		Т	opsoil		0		
		Brown <u>CL</u>	.AY with glass		0	SS-9	
		Fib	erglass		0		
5					0		1
		0 044104		. 1			
		Grey SANDY C	CLAY, moist no odor		0	7	
					0	SB-9	
		Bottom of Te	st Boring at 8.0 ft.				
15							
Comple	tion De	epth: 8 Re	emarks:				
Comple Date St Date Co	arted:	11/20/2013					
Date Co	omplete	ed: 11/20/2013					
Enginee Driller:	er/Geo	logist: BAF Triad					
Dimer.		illau					

	ame: Johns Manville Riverside Parcels	C 3	A		BORING LOG B-10
Project Nu	umber:04-13-0402		GINEERING, I	NC.	
	Location: N 39 20' 53.58" W 80 02' 2	22.45"			
Depth, feet	Well Elevation: Lithologic Description		PID (ppm)	Sample ID	Observations
	Topsoil		0	1 19/11	
	Brown <u>CLAY</u> with rock and glass fragmen odor	its, moist, no	0	SS-10	
5					
5					
	No Recovery				
10					
			0		
	Brown <u>CLAY</u> , very moist, no od	dor	0	SB-10	
15	Brown <u>GEAT</u> , very moist, no oc		0		
	Bottom of Test Boring at 16 ft				
20					
Completic					
Date Star					
Date Com	npleted: 11/20/2013 Geologist: BAF				
Engineer/ Driller:	Geologist: BAF Triad				

		Johns Manville Riverside Parcels	317		BORING LOG B-11
Project	Numbe	er:04-13-0402 TRIA	D ENGINEERING, I	NC.	
		Location: N 39 20' 53.58" W 80 02' 22.45" Well Elevation: 100.00'			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
		Topsoil	0		
		Brown SAND , no odor	0		
			0	SS-11	
5		Brown <u>CLAY</u> with trace sand, no odor	0 0		
10			0 0	SB-11	
15		Brown <u>SANDY CLAY</u> , with brick, wet, no odor	0 0		
			0		
20		Bottom of Test Boring at 16.0 ft.			
Comple	etion De	epth: 16 Remarks:			
Date S		11/19/2013			
	omplete				
Engine	er/Geol	logist: BAF			
Driller:		Triad			

Project Name: Johns Manville Rive		RIAL		BORING LOG B-12
Project Number:04-13-0402	TRIA	AD ENGINEERING, II	NC.	
Location: N 39 20'	53.58" W 80 02' 22.45"			
Symbol/USCs Mell Elevation:	nologic Description	PID (ppm)	O Sample ID SS-12	Observations
	Topsoil	0	SS-12	
5	No Recovery			
10			+ 1	
	Refusal at 10.0 ft.			
15				
20				
Completion Depth: Date Started: 11/19/2 Date Completed: 11/19/2 Engineer/Geologist: BAF Driller: Triad				

Project	Name:	Johns Manville Riverside Parcels			BORING LOG B-13
Project	Numbe	r:04-13-0402 TRIAD EN	NGINEERING	, INC.	
		Location: N 39 20' 53.58" W 80 02' 22.45" Well Elevation: 100.00'			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
-		Topsoil	0	SS-13	
					17
5					1
		No recovery			l l
10					
		Grey <u>CLAY</u> with glass fragments and fiberglass, no odor	0		
15			0	SR 13	
			0		
		Grey <u>CLAY</u> , wet, no odor	0		
20			0		
-3444		Bottom of Test Boring at 20.0 ft.			
Date S	etion De tarted: complete eer/Geol	11/19/2020			

1 / 3		Johns Manville Riverside	Parcels	23			BORING LOG B-14
Project	Numbe	er:04-13-0402			INEERING,	INC.	
		Location: N 39 20' 53.58	W 80 02' 22.4 00.00'	5"			
Depth, feet	Symbol/USCS		ic Description		PID (ppm)	Sample ID	Observations
		4	Topsoil		0		
		C	oncrete		- 1	SS-14	
5		Brown <u>CL</u> A	<u>Y</u> , moist, no odor		0		
				18	0	V 10 11 11	
					0	1	
					0		
10			<u>DY CLAY,</u> no odor, n	noist	0 0 0 0	SB-14	
		Bottom of T	est Boring at 12.0				
15							
Comple			emarks:				
Date S		11/20/2013	D MC/MCD				
Date C			R M2/M2D				
Engine	er/Geol	ogist: BAF Triad					
Driller:		iriad					

Project	Name:	Johns Manville Riverside Parcels		D	BORING LOG B-15
Project	Numbe	r:04-13-0402	RIAD ENGINEERI	NG, INC.	The second second
	100	Location: N 39 19' 45.3" W 81 33' 18.7" Well Elevation:			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
		Topsoil		0	
				0 SS-15 0	
		Brown <u>CLAY</u> , moist, no odor		0	
5				0	
				0 0 SB-15	
		Grey to brown SANDY CLAY , no odor, mois	t	0	
10				0	
		Bottom of Test Boring at 12.0			
	-				
15	ì				
			. 14		
20					1
Compl	etion De	epth: 12 Remarks:			
	Started:	11/20/2013			
Date C	Complet	ed: 11/20/2013			
Engine	Complet eer/Geo	logist: BAF			
Driller		Triad			

	e: Johns Manville Riverside Parcels			BORING LOG B-16
Project Numb	DEL.U4-13-U4UZ	NGINEERING,	INC.	
SO	Location: N 39 19' 45.3" W 81 33' 17.5" Well Elevation:	-,		
Depth, feet Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
1- 1/1-	Topsoil	0		
	Brick		SS-16	
5	Brown <u>CLAY</u> with rock and glass fragments, moist, no odor		SB-16	
20	Bottom of Test Boring at 16 ft.			
Completion Date Started: Date Comple Engineer/Geo Driller:	: 11/20/2013 eted: 11/20/2013			

Project	Name:	Johns Manville Riverside	e Parcels	R			BORING LOG B-17
Project	Numbe	er:04-13-0402			GINEERING, I	NC.	
	100	Location: N 39 19' 38. Well Elevation:	12" W 81 33' 16.35'				
Depth, feet	Symbol/USCS	Litholo	gic Description		PID (ppm)	Sample ID	Observations
			Asphalt		0		
		Brow	n SILTY SAND		1 - 2	SS-17	
		Fill with glass, pea gr	avel, and brick fragment	s, wet	0 0 0	00 17	
10		Gla	iss <u>FILL</u> , wet		0 0 0 0		
15			<u>Y CLAY</u> , gray staining		0 0 0 0	SB-17	
		Bottom of	Test Boring at 15 ft.	_	-	-	
20			, social and the last				
Comple	etion De	epth: 15	Remarks:				
Date S	etion De tarted: complete er/Geol	2/14/2014					
Date C	omplete	ed: 2/14/2014					* 1
Engine	er/Geol	ogist: BAF					
Driller:		Triad					

Project Na	me: Johns Manville Riverside Parcels	CRIAD	BORING B-18	
Project Nu	Inber.04-13-0402	TRIAD ENGINEERING, INC		
- 1	Location: N 39 19' 38.28" W 81 33' 16.98"			
Depth, feet	Well Elevation: Lithologic Description	PID (ppm)	Observat	ions
	Asphalt	0		
		0 5	SS-18	
26 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -		o		
5		0		
¥	Brown SILTY CLAY, slighlty moist	0		
		o		
12.00		0		
10		0 0	6B-16	
(1231) (1231)	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0	55-10	
	20.20.00	0		
	Brown <u>SAND</u> , gray staining	0		
15	D. H. (T. I.D.) 145 (I	0		
	Bottom of Test Boring at 15 ft.			
20				
Completio	n Depth: 15 Remarks:			
Date Start	ed: 2/14/2014			
Date Com				
Engineer/0 Driller:	Geologist: BAF Subsurface, Inc.			

		Johns Manville Riverside Parcels	RA		BORING LOG B-19
Project	Numbe	1.04-13-0402	RIAD ENGINEERING,	INC.	
	SCS	Location: N 39 19' 37.10" W 81 33' 17.71" Well Elevation:			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
		Asphalt	0		
The state of the s			0	SS-19	
			0		
5		Brown SILTY CLAY , slighlty moist	0		
			0		
	0		0	SB-19	
10			0		
			0		
	Brown <u>SAND</u> , fine grain, saturated		0		
15			-3		
		Bottom of Test Boring at 15 ft.	0		
20					
Comple Date St	tion De	epth: 15 Remarks: 2/14/2014			
Date Co	omplete	ed: 2/14/2014			
Enginee	er/Geol	ogist: BAF			
Driller:		Subsurface, Inc.			

		Johns Manville Riverside Parcels	SIA	D	BORING LOG B-20
Project	Numbe	r:04-13-0402 TRIAD E	NGINEERING,	, INC.	
		Location: N 39 19' 36.72" W 81 33' 16.98" Well Elevation:			
Depth, feet	Symbol/USCS	Lithologic Description	PID (ppm)	Sample ID	Observations
		Asphalt with gravel base	0		
			0	SS-20	
		Brown <u>SILTY CLAY</u> , with fine sand and some glass	0		
			0		
5			0		
			0		
			0		
			0		
10		FILL, with sand, gravel, and glass, saturated	0		
			0		
			0		
15		h = =	0		
		Brown <u>SILTY CLAY</u> , slightly moist	0		
		Bottom of Test Boring at 17 ft.			
			1 1		
20					
Comple		pth: 17 Remarks:			
Date S		2/14/2014			
Date C Engine	omplete er/Geol	ed: 2/14/2014 ogist: BAF			
Driller:	CI/OEUI	Subsurface, Inc.			

	e: Johns Manville Riverside Parcels	NGINEERING,	INC.	BORING LOG B-21
	Location: N 39 19' 34.37" W 81 33' 16.55"	NGINEERING,	inc.	
Depth, feet Symbol/USCS		PID (ppm)	Sample ID	Observations
	TOPSOIL	0		
	Brown <u>SILTY CLAY</u> , with glass, brick, fiberglass, and sand	0 0 0	SS-21	
10	Gray and brown <u>SILTY CLAY</u> , with fiberglass, wet	0 0 0		
15	No Recovery			
	Brown <u>SILTY CLAY</u> , slighlty moist	0 0		
20		SB-21		
Restli	Bottom of Test Boring at 20 ft.			
Completion I Date Started Date Comple Engineer/Ge Driller:	2/14/2014 eted: 2/14/2014			

		Johns Manville Riverside Parc		R		BORING LOG B-22
Project	Numbe	r:04-13-0402		ENGINEERING,	INC.	
	SCS	Location: N 39 19' 39.19" Well Elevation:	W 81 33' 15.96"	1		
Depth, feet	Symbol/USCS	Lithologic D		PID (ppm)	Sample ID	Observations
		TOPS	OIL	0		
				0	SS-22	
		Brown SILTY CLAY, slighlty moist		0		
5				0		
		<u>FILL</u> with gravel,	glass, and sand	0		
10		Brown SILTY CLA	<u>ıY</u> , slighlty moist	0 0	SB-22	
	SMIRITARI	Bottom of Test B	Boring at 10 ft.	1		
			3			
15						

20						
4						
Comple	etion De	pth: 10 Rema	irks:	1 1		
Date St		2/14/2014	2.20			
Date C						
Engine		ogist: BAF				
Driller:		Subsurface, Inc.				

APPENDIX 2 Laboratory Reports

27-Feb-2014

Matthew Wright
Triad Engineering, Inc.
4980 Teays Valley Road
Scott Depot, WV 25560

Re: John's Manville - Riverside Parcels

Work Order: 1402737

Dear Matthew,

ALS Environmental received 26 samples on 18-Feb-2014 07:45 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 77.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Electronically approved by: Rebecca Kiser

Rebieca Kiser

Rebecca Kiser Project Manager Dir Accaseon

Certificate No: MN 532786

Report of Laboratory Analysis

(i) Individual example example, authority to the control of the ST of the PST of the Control of th

www.alsglobal.com

PRICHT SOLUTIONS THE CONTROL OF THE PARTY.

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Work Order:

1402737

Work Order Sample Summary

Lab Samp ID	Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
1402737-01	SS-17	Soil		2/14/2014 10:15	2/18/2014 07:45	
1402737-02	SS-17 FD	Soil		2/14/2014 10:15	2/18/2014 07:45	
1402737-03	SB-17	Soil		2/14/2014 10:30	2/18/2014 07:45	
1402737-04	SB-17 FD	Soil		2/14/2014 10:30	2/18/2014 07:45	
1402737-05	SS-19 with MS/MSD	Soil		2/14/2014 11:15	2/18/2014 07:45	
1402737-06	SB-20 with MS/MSD	Soil		2/14/2014 12:00	2/18/2014 07:45	
1402737-07	BG-1	Soil		2/14/2014 15:00	2/18/2014 07:45	
1402737-08	BG-1 FD	Soil		2/14/2014 15:00	2/18/2014 07:45	
1402737-09	BG-2 with MS/MSD	Soil		2/14/2014 15:10	2/18/2014 07:45	
1402737-10	SS-18	Soil		2/14/2014 10:45	2/18/2014 07:45	
1402737-11	SS-20	Soil		2/14/2014 11:45	2/18/2014 07:45	
1402737-12	SS-21	Soil		2/14/2014 11:30	2/18/2014 07:45	
1402737-13	SS-22	Soil		2/14/2014 14:00	2/18/2014 07:45	
1402737-14	SB-18	Soil		2/14/2014 11:00	2/18/2014 07:45	
1402737-15	SB-19	Soil		2/14/2014 11:30	2/18/2014 07:45	
1402737-16	SB-21	Soil		2/14/2014 13:45	2/18/2014 07:45	
1402737-17	SB-22	Soil		2/14/2014 14:15	2/18/2014 07:45	
1402737-18	BG-3	Soil		2/14/2014 15:20	2/18/2014 07:45	Ц
1402737-19	BG-4	Soil		2/14/2014 15:30	2/18/2014 07:45	
1402737-20	BG-5	Soil		2/14/2014 15:40	2/18/2014 07:45	
1402737-21	BG-6	Soil		2/14/2014 15:50	2/18/2014 07:45	
1402737-22	BG-7	Soil		2/14/2014 16:00	2/18/2014 07:45	
1402737-23	BG-8	Soil		2/14/2014 16:10	2/18/2014 07:45	
1402737-24	BG-9	Soil		2/14/2014 16:20	2/18/2014 07:45	
1402737-25	BG-10	Soil		2/14/2014 16:30	2/18/2014 07:45	
1402737-26	Trip Blank	Water		2/14/2014	2/18/2014 07:45	9

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Work Order:

1402737

Case Narrative

Batch 55964, Method VOC_8260_S, Sample 1402737-05A MSD: The RPD between the MS and MSD was outside the control limit. The corresponding result in the parent sample should be considered estimated for this analyte: Bromomethane

Batch 55964, Method VOC_8260_S, Sample MBLK-55964: B flagged attributed to known common lab contaminent (DCM). DCM hit is less than 5X the PQL, no qualification needed.

Batch 55977, Method ICP_6020_S, Sample 1402737-05BMS: The MS and/or MSD recovery was outside of the control; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba

Batch 55983, Method ICP_6020_S, Sample 1402737-06B: The MS and/or MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: As

Batch 55983, Method ICP_6020_S, Sample 1402737-06B: The MS and/or MSD recovery was outside of the control; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba

Date: 27-Feb-14

QUALIFIERS,

ACRONYMS, UNITS

ALS Group USA, Corp

Client: Triad Engineering, Inc.

Project: John's Manville - Riverside Parcels

Milligrams per Kilogram Dry Weight

mg/Kg-dry

WorkOrder: 1402737

WorkOrder:	1402737
Qualifier	<u>Description</u>
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
H	Analyzed outside of Holding Time
ì	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
O P	Sample amount is > 4 times amount spiked Dual Column results percent difference > 40%
r R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
Α	APHA Standard Methods
D	ASTM
E	EPA
sw	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
μg/K.g-dry	Micrograms per Kilogram Dry Weight
μg/L	Micrograms per Liter

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-17

Collection Date: 2/14/2014 10:15 AM

Work Order: 1402737

Lab ID: 1402737-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471	1	Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.029		0.013	mg/Kg-dry	1	2/24/2014 03:57 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	110		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
Barium	210		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
Cadmium	2.4		0.81	mg/Kg-dry	5	2/22/2014 05:35 AM
Chromium	21		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
Lead	180		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
Selenium	6.8		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
Silver	ND		2.0	mg/Kg-dry	5	2/22/2014 05:35 AM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	M	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND		69	µg/Kg-dry	20	2/26/2014 01:02 AM
Acenaphthylene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Anthracene	ND		69	µg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(a)anthracene	120		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(a)pyrene	69		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(b)fluoranthene	83		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(b-k)fluoranthene	ND		140	µg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(e)pyrene	ND		210	μg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(g,h,i)perylene	ND		69	µg/Kg-dry	20	2/26/2014 01:02 AM
Benzo(k)fluoranthene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Chrysene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Dibenzo(a.h)anthracene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Fluoranthene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Fluorene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Indeno(1,2,3-cd)pyrene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Naphthalene	ND		69	µg/Kg-dгу	20	2/26/2014 01:02 AM
Phenanthrene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Pyrene	ND		69	μg/Kg-dry	20	2/26/2014 01:02 AM
Surr: 2-Fluorobiphenyl	0	s	12-100	%REC	20	2/26/2014 01:02 AM
Surr: 4-Terphenyl-d14	64.0		25-137	%REC	20	2/26/2014 01:02 AM
Surr: Nitrobenzene-d5	44.0		37-107	%REC	20	2/26/2014 01:02 AM
VOLATILE ORGANIC COMPOUNDS			SW826	nB	Prep: SW5035 / 2/21/14	Analyst: RS
1.1,1-Trichloroethane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
1,1,2,2-Tetrachloroethane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
1,1,2-Trichioroethane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
1,1-Dichloroethane	ND.		32	µg/Kg-dry	1	2/22/2014 03:08 AM
1.1-Dichloroethene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM

Note:

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-17

Collection Date: 2/14/2014 10:15 AM

Work Order: 1402737

Lab ID: 1402737-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
1,2-Dichloropropane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
2-Butanone	ND		210	μg/Kg-dry	1	2/22/2014 03:08 AM
2-Hexanone	ND		32	μg/Kg-dry	1	2/22/ 2 014 03:08 AM
4-Methyl-2-pentanone	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Acetone	ND		110	μ g /Kg-dry	1	2/22/2014 03:08 AM
Benzene	40		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Bromodichloromethane	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Bromoform	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Bromomethane	ND		79	μg/Kg-dry	1	2/22/2014 03:08 AM
Carbon disulfide	ND		32	µg/Kg-dry	1	2/22/2014 03:08 AM
Carbon tetrachloride	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Chlorobenzene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Chloroethane	ND		110	μg/Kg-dry	1	2/22/2014 03:08 AM
Chloroform	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Chloromethane	ND		110	μg/Kg-dry	1	2/22/2014 03:08 AM
cis-1,2-Dichloroethene	ND		32	µg/Kg-dry	1	2/22/2014 03:08 AM
cis-1,3-Dichloropropene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Dibromochloromethane	ND		32	μg/Kg-d <i>r</i> y	1	2/22/2014 03:08 AM
Ethylbenzene	120		32	μg/Kg-dry	1	2/22/2014 03:08 AN
m,p-Xylene	470		63	μg/Kg-dry	1	2/22/2014 03:08 AN
Methylene chloride	ND		32	µg/Kg-dry	1	2/22/2014 03:08 AM
o-Xylene	480		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Styrene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Tetrachloroethene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
Toluene	350		32	μg/Kg-dry	1	2/22/2014 03:08 AN
trans-1,2-Dichloroethene	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
trans-1,3-Dichloropropene	ND		32	µg/Kg-dry	1	2/22/2014 03:08 AN
Trichloroethene	ND		32	µg/Kg-dry	1	2/22/2014 03:08 AM
Vinyl chloride	ND		32	μg/Kg-dry	1	2/22/2014 03:08 AM
1,2-Dichloroethene, Total	ND		63	μg/Kg-dry	1	2/22/2014 03:08 AN
1,3-Dichloropropene, Total	ND		63	μg/Kg-dry	1	2/22/2014 03:08 AN
Xylenes, Total	960		95	μg/Kg-dry	1	2/22/2014 03:08 AN
Surr: 1,2-Dichloroethane-d4	96.8		70-130	%REC	1	2/22/2014 03:08 AN
Surr: 4-Bromofluorobenzene	102		70-130	%REC	1	2/22/2014 03:08 AN
Surr: Dibromofluoromethane	98.2		70-130	%REC	1	2/22/2014 03:08 AN
Surr: Toluene-d8	100		70-130	%REC	1	2/22/2014 03:08 AN
MOISTURE			A2540	G		Analyst: AT
Moisture	4.9		0.050	% of sam	ple 1	2/20/2014 10:11 AN

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-17 FD

33-17 11

Collection Date: 2/14/2014 10:15 AM

Work Order: 1402737

Lab ID: 1402737-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.20		0.016	mg/Kg-dry	1	2/24/2014 04:00 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	110		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
Barium	620		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
Cadmium	1.9		0.77	mg/Kg-dry	5	2/22/2014 05:41 AM
Chromium	. 25		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
Lead	240		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
Selenium	ND		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
Silver	ND		1.9	mg/Kg-dry	5	2/22/2014 05:41 AM
SEMI-VOLATILE ORGANIC COMPOUNDS	S - SIM		SW8270	M	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Acenaphthylene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Anthracene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(a)anthracene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(a)pyrene	87		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(b)fluoranthene	100		79	µg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(b-k)fluoranthene	ND		160	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(e)pyrene	ND		240	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(g,h,i)perylene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Benzo(k)fluoranthene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Chrysene	110		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Dibenzo(a,h)anthracene	ND		79	µg/Kg-dry	20	2/26/2014 01:35 AM
Fluoranthene	79	J	79	µg/Kg-dry	20	2/26/2014 01:35 AM
Fluorene	ND		79	µg/Kg-dry	20	2/26/2014 01:35 AM
Indeno(1,2,3-cd)pyrene	ND		79	µg/Kg-dry	20	2/26/2014 01:35 AM
Naphthalene	ND		79	µg/Kg-dry	20	2/26/2014 01:35 AM
Phenanthrene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Pyrene	ND		79	μg/Kg-dry	20	2/26/2014 01:35 AM
Surr: 2-Fluorobiphenyl	0	s	12-100	%REC	20	2/26/2014 01:35 AM
Surr: 4-Terphenyl-d14	80.0		25-137	%REC	20	2/26/2014 01:35 AM
Surr: Nitrobenzene-d5	52.0		37-107	%REC	20	2/26/2014 01:35 AM
VOLATILE ORGANIC COMPOUNDS			SW8260	в	Prep: SW5035 / 2/21/14	Analyst: R\$
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1,1,2,2-Tetrachioroethane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1,1-Dichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1.1-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-17 FD

Collection Date: 2/14/2014 10:15 AM

Work Order: 1402737

Lab ID: 1402737-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
2-Butanone	ND		240	μg/Kg-dry	1	2/22/2014 03:34 AM
2-Hexanone	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Acetone	ND		120	μ g/ Kg-dry	1	2/22/2014 03:34 AM
Benzene	ND		36	µg/Kg-dry	1	2/22/2014 03:34 AM
Bromodichloromethane	ND		36	μ g/ Kg-dry	1	2/22/2014 03:34 AM
Bromoform	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Bromomethane	ND		91	μg/Kg-dry	1	2/22/2014 03:34 AM
Carbon disulfide	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Carbon tetrachioride	ND		36	µg/Kg-dry	1	2/22/2014 03:34 AM
Chlorobenzene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Chloroethane	ND		120	μg/Kg-dry	1	2/22/2014 03:34 AM
Chloroform	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Chloromethane	ND		120	μg/Kg-dry	1	2/22/2014 03:34 AM
cis-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
cis-1,3-Dichloropropene	ND		36	μ g/ Kg-dry	1	2/22/2014 03:34 AM
Dibromochloromethane	ND		36	μ g /Kg-dry	1	2/22/2014 03:34 AM
Ethylbenzene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
m,p-Xylene	ND		73	µg/Kg-dry	1	2/22/2014 03:34 AM
Methylene chloride	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
o-Xylene	42		36	μg/Kg-dry	, 1	2/22/2014 03:34 AM
Styrene	ND		36	μ g/ Kg-dry	1	2/22/2014 03:34 AM
Tetrachloroethene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Toluene	53		36	μg/Kg-dry	, 1	2/22/2014 03:34 AM
trans-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
trans-1,3-Dichloropropene	ND		36	µg/Kg-dry	1	2/22/2014 03:34 AM
Trichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
Vinyl chloride	ND		36	μg/Kg-dry	1	2/22/2014 03:34 AM
1.2-Dichloroethene, Total	ND		73	μg/Kg-dry	1	2/22/2014 03:34 AM
1,3-Dichloropropene, Total	ND		73	μg/Kg-dry	1	2/22/2014 03:34 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	2/22/2014 03:34 AM
Surr: 1,2-Dichloroethane-d4	97.2		70-130	%REC	1	2/22/2014 03:34 AN
Surr: 4-Bromofluorobenzene	97.0		70-130	%REC	1	2/22/2014 03:34 AN
Surr: Dibromofluoromethane	96.5		70-130	%REC	1	2/22/2014 03:34 AN
Surr: Toluene-d8	99.4		70-130	%REC	1	2/22/2014 03:34 AN
MOISTURE			A2540	G		Analyst: AT
Moisture	18		0.050	% of sam	ple 1	2/20/2014 10:11 AN

Note:

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-17

Collection Date: 2/14/2014 10:30 AM

Work Order: 1402737

Lab ID: 1402737-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.044		0.016	mg/Kg-dry	1	2/25/2014 06:19 PM
METALS BY ICP-MS			SW6020	Α	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	7,3		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
Barium	210		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
Cadmium	ND		0.95	mg/Kg-dry	5	2/22/2014 05:47 AM
Chromium	15		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
Lead	17		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
Selenium	ND		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
Silver	ND		2.4	mg/Kg-dry	5	2/22/2014 05:47 AM
SEMI-VOLATILE ORGANIC COMPOUNDS	SIM		SW8270	М	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Acenaphthylene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Anthracene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(a)anthracene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(a)pyrene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(b)fluoranthene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(b-k)fluoranthene	ND		16	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(e)pyrene	ND		25	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(g,h,i)perytene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Benzo(k)fluoranthene	ND		8.2	µg/Kg-dry	1	2/25/2014 07:59 PM
Chrysene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Dibenzo(a,h)anthracene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Fluoranthene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Fluorene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Indeno(1,2,3-cd)pyrene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Naphthalene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Phenanthrene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Pyrene	ND		8.2	μg/Kg-dry	1	2/25/2014 07:59 PM
Surr: 2-Fluorobiphenyl	62.6		12-100	%REC	1	2/25/2014 07:59 PM
Surr: 4-Terphenyl-d14	88.6		25-137	%REC	1	2/25/2014 07:59 PM
Surr: Nitrobenzene-d5	74.6		37-107	%REC	1	2/25/2014 07:59 PM
VOLATILE ORGANIC COMPOUNDS			SW826)B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
1,1,2,2-Tetrachloroethane	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
1,1,2-Trichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
1.1-Dichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
1,1-Dichloroethene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-17

Collection Date: 2/14/2014 10:30 AM

Work Order: 1402737

Lab ID: 1402737-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	310		39	μg/Kg-dry	1	2/22/2014 04:00 AM
1,2-Dichloropropane	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
2-Butanone	ND		260	μ g/Kg-d ry	1	2/22/2014 04:00 AM
2-Hexanone	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
4-Methyl-2-pentanone	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
Acetone	ND		130	μ g/ Kg-dry	1	2/22/2014 04:00 AM
Benzene	ND		39	µg/Kg-dry	1	2/22/2014 04:00 AM
Bromodichloromethane	ND		39	μ g /Kg-dry	1	2/22/2014 04:00 AM
Bromoform	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
Bromomethane	ND		97	μg/Kg-dry	1	2/22/2014 04:00 AM
Carbon disulfide	ND		39	µg/Kg-dry	1	2/22/2014 04:00 AM
Carbon tetrachloride	ND		39	µg/Kg-dry	1	2/22/2014 04:00 AM
Chlorobenzene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
Chloroethane	ND		130	μg/Kg-dry	1	2/22/2014 04:00 AM
Chloroform	ND		39	µg/Kg-dry	1	2/22/2014 04:00 AM
Chloromethane	ND		130	μg/Kg-dry	1	2/22/2014 04:00 AM
cis-1,2-Dichloroethene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
cis-1,3-Dichloropropene	ND		39	μ g /Kg-dry	1	2/22/2014 04:00 AM
Dibromochioromethane	N D		39	μg/Kg-dry	1	2/22/2014 04:00 AN
Ethylbenzene	ND		39	µg/Kg-dry	1	2/22/2014 04:00 AM
m,p-Xylene	ND		78	μg/Kg-dry	1	2/22/2014 04:00 AN
Methylene chloride	ND		39	μ g /Kg-dry	1	2/22/2014 04:00 AM
o-Xylene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
Styrene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
Tetrachloroethene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
Toluene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
trans-1,2-Dichloroethene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
trans-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
Trichloroethene	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AM
Vinyl chloride	ND		39	μg/Kg-dry	1	2/22/2014 04:00 AN
1,2-Dichloroethene, Total	ND		78	μg/Kg-dry	1	2/22/2014 04:00 AN
1,3-Dichloropropene, Total	ND		78	μg/Kg-dry	1	2/22/2014 04:00 AN
Xylenes, Total	ND		120	µg/Kg-dry	1	2/22/2014 04:00 AN
Surr: 1,2-Dichloroethane-d4	95.3		70-130	%REC	1	2/22/2014 04:00 AM
Surr: 4-Bromofluorobenzene	99.8		70-130	%REC	1	2/22/2014 04:00 AM
Surr: Dibromofluoromethane	92.4		70-130	%REC	1	2/22/2014 04:00 AM
Surr: Toluene-d8	100		70-130	%REC	1	2/22/2014 04:00 AM
MOISTURE			A2540			Analyst: AT
Moisture	23		0.050	% of sam	pie 1	2/20/2014 04:57 PM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

Collection Date: 2/14/2014 10:30 AM

SB-17 FD

Work Order: 1402737

Lab ID: 1402737-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.049		0.017	mg/Kg-dry	1	2/25/2014 06:21 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	8.5		2.2	mg/Kg-dry	5	2/22/2014 05:53 AM
Barium	120		2.2	mg/Kg-dry	5	2/22/2014 05:53 AM
Cadmium	ND		88.0	mg/Kg-dry	5	2/22/2014 05:53 AM
Chromium	15		2,2	mg/Kg-dry	5	2/22/2014 05:53 AM
Lead	15		2.2	mg/Kg-dry	5	2/22/2014 05:53 AM
Selenium	ND		2.2	mg/Kg-dry	5	2/22/2014 05:53 AM
Silver	ND		2.2	mg/Kg-dry	5	2/22/2014 05:53 AM
SEMI-VOLATILE ORGANIC COMPOUNDS	S - SIM		SW8270	DM	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Acenaphthylene	ND		8.3	. µg/Kg-dry	1	2/25/2014 08:33 PM
Anthracene	ND		8.3	µg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(a)anthracene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(a)pyrene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(b)fluoranthene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(b-k)fluoranthene	ND		17	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(e)pyrene	ND		25	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(g,h,i)perylene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Benzo(k)ſiuoranthene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Chrysene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Dibenzo(a,h)anthracene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Fluoranthene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Fluorene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Indeno(1,2,3-cd)pyrene	ND		8.3	µg/Kg-dry	1	2/25/2014 08:33 PM
Naphthalene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Phenanthrene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Pyrene	ND		8.3	μg/Kg-dry	1	2/25/2014 08:33 PM
Surr: 2-Fluorobiphenyl	89.8		12-100	%REC	1	2/25/2014 08:33 PM
Surr: 4-Terphenyl-d14	88.0		25-137	%REC	1	2/25/2014 08:33 PM
Surr: Nitrobenzene-d5	74.4		37-107	%REC	1	2/25/2014 08:33 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
1,1,2,2-Tetrachloroethane	ND.		38	μg/Kg-dry	1	2/22/2014 04:26 AM
1,1,2-Trichioroethane	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
1,1-Dichloroethane	ND		38	ug/Kg-dry	1	2/22/2014 04:26 AM
1.1-Dichloroethene	ND.		38	μg/Kg-dry	1	2/22/2014 04:26 AM

Note:

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-17 FD

Collection Date: 2/14/2014 10:30 AM

Work Order: 1402737 Lab ID: 1402737-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	300		38	μg/Kg-dry	1	2/22/2014 04:26 AM
1,2-Dichloropropane	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
2-Butanone	ND		250	μg/Kg-dry	1	2/22/2014 04:26 AM
2-Hexanone	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
4-Methyl-2-pentanone	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Acetone	ND		130	μg/Kg-dry	1	2/22/2014 04:26 AM
Benzene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Bromodichloromethane	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Bromoform	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Bromomethane	ND		95	μg/Kg-dry	1	2/22/2014 04:26 AM
Carbon disulfide	56		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Carbon tetrachloride	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Chiorobenzene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Chioroethane	ND		130	μg/Kg-dry	1	2/22/2014 04:26 AM
Chloroform	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Chloromethane	ND		130	µg/Kg-dry	1	2/22/2014 04:26 AM
cis-1,2-Dichloroethene	ND		38	µg/Kg-dry	1	2/22/2014 04:26 AM
cis-1,3-Dichloropropene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Dibromochloromethane	N D		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Ethylbenzene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
m,p-Xylene	ND		76	μg/Kg-dry	1	2/22/2014 04:26 AM
Methylene chloride	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
o-Xylene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Styrene	ND		38	µg/Kg-dry	1	2/22/2014 04:26 AM
Tetrachloroethene	ND		38	µg/Kg-dry	1	2/22/2014 04:26 AM
Toluene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
trans-1.2-Dichloroethene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
trans-1,3-Dichloropropene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Trichloroethene	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
Vinyl chloride	ND		38	μg/Kg-dry	1	2/22/2014 04:26 AM
1,2-Dichloroethene, Total	ND		76	μg/Kg-dry	1	2/22/2014 04:26 AM
1.3-Dichloropropene, Total	ND		76	μg/Kg-dry	1	2/22/2014 04:26 AN
Xylenes, Total	ND		110	μg/Kg-dry	1	2/22/2014 04:26 AN
Surr: 1,2-Dichloroethane-d4	96.5		70-130	%REC	1	2/22/2014 04:26 AM
Surr: 4-Bromofluorobenzene	98.4		70-130	%REC	1	2/22/2014 04:26 AN
Surr: Dibromofluoromethane	96.4		70-130	%REC	1	2/22/2014 04:26 AN
Surr: Toluene-d8	99.4		70-130	%REC	1	2/22/2014 04:26 AN
MOISTURE			A2540	G		Analyst: AT
Moisture	21		0.050	% of samp	ole 1	2/20/2014 10:11 AN

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-19 with MS/MSD

Collection Date: 2/14/2014 11:15 AM

Work Order: 1402737

Lah ID: 1402737-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.041		0.014	mg/Kg-dry	1	2/24/2014 04:02 PM
METALS BY ICP-MS			SW6020	D A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	8.8		2.1	mg/Kg-dry	5	2/22/2014 05:59 AM
Barlum	190		2.1	mg/Kg-dry	5	2/22/2014 05:59 AM
Cadmium	ND		0.85	mg/Kg-dry	5	2/22/2014 05:59 AM
Chromium	15		2.1	mg/Kg-dry	5	2/22/2014 05:59 AM
Lead	15		2.1	mg/Kg-dry		2/22/2014 05:59 AM
Selenium	ND		2.1	mg/Kg-dry	5	2/22/2014 05:59 AM
Silver	ND		2.1	mg/Kg-dry	5	2/22/2014 05:59 AM
SEMI-VOLATILE ORGANIC COMPOUNDS	e eim		SW8270	nM	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND.		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Acenaphthylene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Anthracene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(a)anthracene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(a)pyrene	ND.		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(b)fluoranthene	ND.		7.6	µg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(b-k)fluoranthene	ND		15	µg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(e)pyrene	ND		23	μg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(g,h,i)perylene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Benzo(k)fluoranthene	ND.		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Chrysene	ND.		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Dibenzo(a,h)anthracene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Fluoranthene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Fluorene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Indeno(1,2,3-cd)pyrene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Naphthalene	ND		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Phenanthrene	ND.		7.6	μg/Kg-dry	1	2/25/2014 06:51 PM
Pyrene	ND		7.6	μg/Kg-diry	1	2/25/2014 06:51 PM
Sur: 2-Fluorobiphenyl	72.0		12-100	%REC	1	2/25/2014 06:51 PM
Surr: 4-Terphenyl-d14	86.0		25-137	%REC	1	2/25/2014 06:51 PM
Surr: Nitrobenzene-d5	68.6		37-107	%REC	1	2/25/2014 06:51 PM
			SW826	Λ P	Prep: SW5035 / 2/21/14	Analyst: RS
VOLATILE ORGANIC COMPOUNDS	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
1,1,1-Trichloroethane	ND ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
1,1,2,2-Tetrachioroethane	ND ND		35 35	μg/Kg-dry	1	2/22/2014 04:52 AM
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
1,1-Dichloroethane	ואט		55	µg/itg-diy	1	2/22/2014 04:52 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-19 with MS/MSD

Collection Date: 2/14/2014 11:15 AM

Work Order: 1402737

Lab ID: 1402737-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
1,2-Dichloropropane	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
2-Butanone	ND		230	μg/Kg-dry	1	2/22/2014 04:52 AM
2-Hexanone	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
4-Methyi-2-pentanone	ND		35	µg/Kg-dry	1	2/22/2014 04:52 AM
Acetone	ND		120	μg/Kg-dry	1	2/22/2014 04:52 AM
Benzene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Bromoform	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Bromomethane	ND		87	μg/Kg-dry	1	2/22/2014 04:52 AM
Carbon disulfide	120		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Chloroethane	ND		120	μg/Kg-dry	1	2/22/2014 04:52 AM
Chloroform	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Chloromethane	ND		120	μ g /Kg-dry	1	2/22/2014 04:52 AM
cis-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
cis-1,3-Dichloropropene	ND		35	μ g /Kg-dry	1	2/22/2014 04:52 AM
Dibromochloromethane	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Ethylbenzene	ND		35	µg/Kg-dry	1	2/22/2014 04:52 AM
m,p-Xylene	ND		69	μg/Kg-dry	1	2/22/2014 04:52 AM
Methylene chloride	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
o-Xylene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Styrene	ND		35	µg/Kg-diry	1	2/22/2014 04:52 AM
Tetrachloroethene	ND		35	µg/Kg-dry	1	2/22/2014 04:52 AM
Toluene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Trichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 04:52 AM
Vinyl chloride	ND		35	µg/Kg-dry	1	2/22/2014 04:52 AM
1,2-Dichloroethene, Total	ND		69	µg/Kg-dry	1	2/22/2014 04:52 AN
1,3-Dichloropropene, Total	ND		69	μg/Kg-dry	1	2/22/2014 04:52 AN
Xylenes, Total	ND		100	μg/Kg-dry	1	2/22/2014 04:52 AN
Surr: 1,2-Dichloroethane-d4	96. 9		70-130	%REC	1	2/22/2014 04:52 AN
Surr: 4-Bromofluorobenzene	98.6		70-130	%REC	1	2/22/2014 04:52 AM
Surr: Dibromofluoromethane	96.1		70-130	%REC	1	2/22/2014 04:52 AN
Surr: Toluene-d8	100		70-130	%REC	1	2/22/2014 04:52 AM
MOISTURE			A2540	G		Analyst: AT
Moisture	14		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-20 with MS/MSD

Collection Date: 2/14/2014 12:00 PM

Work Order: 1402737

Lab ID: 1402737-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		*****	SW7471	ł	Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.044		0.017	mg/Kg-dry	1	2/24/2014 04:09 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	11		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
Barium	120		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
Cadmium	ND		0.80	mg/Kg-dry	5	2/23/2014 10:40 PM
Chromium	18		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
Lead	15		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
Selenium	ND		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
Silver	ND		2.0	mg/Kg-dry	5	2/23/2014 10:40 PM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	M	Prep: SW3550 / 2/24/14	Analyst: HL
Acenaphthene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Acenaphthylene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Anthracene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(a)anthracene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(a)pyrene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(b)fluoranthene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(b-k)fluoranthene	ND		16	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(e)pyrene	ND		24	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(g,h,i)perylene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Benzo(k)fluoranthene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Chrysene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Dibenzo(a,h)anthracene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Fluoranthene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Fluorene	ND		8.0	µg/Kg-dry	1	2/25/2014 07:25 PM
Indeno(1,2,3-cd)pyrene	ND		8.0	µg/Kg-dry	1	2/25/2014 07:25 PM
Naphthalene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Phenanthrene	ND		8.0	μg/Kg-dry	1	2/25/2014 07:25 PM
Pyrene	ND		8.0	µg/Kg-dry	1	2/25/2014 07:25 PM
Surr: 2-Fluorobiphenyl	75.0		12-100	%REC	1	2/25/2014 07:25 PM
Sur: 4-Terphenyl-d14	92.4		25-137	%REC	1	2/25/2014 07:25 PM
Surr: Nitrobenzene-d5	79.4		37-107	%REC	1	2/25/2014 07:25 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichioroethane	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
• •	ND		38	µg/Kg-dry	1	2/22/2014 05:18 AM
1,1,2,2-Tetrachioroethane	ND ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
1,1,2-Trichloroethane	ND.		38	μg/Kg-dry	1	2/22/2014 05:18 AM
1,1-Dichloroethane	ND ND		38	μg/Kg-dry μg/Kg-dry	1	2/22/2014 05:18 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-20 with MS/MSD Collection Date: 2/14/2014 12:00 PM

Work Order: 1402737

Lab ID: 1402737-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND	***************************************	38	μg/Kg-dry	1	2/22/2014 05:18 AM
1,2-Dichloropropane	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
2-Butanone	ND		250	μg/Kg-dry	1	2/22/2014 05:18 AM
2-Hexanone	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
4-Methyl-2-pentanone	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Acetone	ND		130	μg/Kg-dry	. 1	2/22/2014 05:18 AM
Benzene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Bromodichloromethane	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Bromoform	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Bromomethane	ND		95	μg/Kg-dry	1	2/22/2014 05:18 AM
Carbon disulfide	71		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Carbon tetrachioride	ND		38	pg/Kg-dry	1	2/22/2014 05:18 AM
Chlorobenzene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Chloroethane	ND		130	μg/Kg-dry	1	2/22/2014 05:18 AM
Chloroform	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Chioromethane	ND		130	µg/Kg-dry	1	2/22/2014 05:18 AM
cis-1,2-Dichloroethene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
cis-1,3-Dichloropropene	ND		38	µg/Kg-dry	1	2/22/2014 05:18 AM
Dibromochloromethane	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Ethylbenzene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
m,p-Xylene	ND		76	μg/Kg-dry	1	2/22/2014 05:18 AM
Methylene chloride	ND		38	pg/Kg-dry	1	2/22/2014 05:18 AM
o-Xylene	ND		38	µg/Kg-dry	1	2/22/2014 05:18 AM
Styrene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Tetrachloroethene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Toluene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
trans-1,2-Dichloroethene	ND		38	μg/ K g-dry	1	2/22/2014 05:18 AM
trans-1,3-Dichloropropene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Trichloroethene	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
Vinyl chloride	ND		38	μg/Kg-dry	1	2/22/2014 05:18 AM
1,2-Dichloroethene, Total	ND		76	µg/Kg-dry	1	2/22/2014 05:18 AN
1,3-Dichloropropene, Total	ND		76	μg/Kg-dry	1	2/22/2014 05:18 AM
Xylenes, Total	ND.		110	μg/Kg-dry	1	2/22/2014 05:18 AM
Surr: 1,2-Dichloroethane-d4	96.6		70-130	%REC	1	2/22/2014 05:18 AM
Surr: 4-Bromofluorobenzene	97.6		70-130	%REC	1	2/22/2014 05:18 AM
Surr: Dibromofluoromethane	96.8		70-130	%REC	1	2/22/2014 05:18 AM
Surr: Toluene-d8	98.4		70-130	%REC	1	2/22/2014 05:18 AM
MOISTURE			A2540	G		Analyst: AT
Moisture	21		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

Collection Date: 2/14/2014 03:00 PM

Work Order: 1402737

Lab ID: 1402737-07

Analyses	Result Q	Report (a) Limit U	Dilutio nits Facto		Date Analyzed
METALS BY ICP-MS Arsenic	7.1	SW6020A 2.2	Prep: \$ mg/Kg-dry	SW3050B / 2/21/14 5	Analyst: RH 2/22/2014 06:46 A M
MOISTURE Moisture	19	A2540 G 0.050	% of sample	1	Analyst: AT 2/20/2014 04:57 PM

Client:

Triad Engineering, Inc.

Project:

Note:

John's Manville - Riverside Parcels

Sample ID:

BG-1 FD

מיז ו-טם

Collection Date: 2/14/2014 03:00 PM

Date: 27-Feb-14

Work Order: 1402737

Lab ID: 1402737-08

Analyses	Result (eport Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS Arsenic	6.9	SW6020 2.3	A mg/Kg-dry	Prep: SW3050B / 2/21/14	Analyst: RH 2/22/2014 06:52 AM
MOISTURE Moisture	20	A2540 G 0.050	i % of samp	ole 1	Analyst: AT 2/20/2014 04:57 PM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

BG-2 with MS/MSD

Collection Date: 2/14/2014 03:10 PM

Work Order: 1402737

Lab ID: 1402737-09

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS Arsenic	7.3		SW6020 2.0	Mg/Kg-dry	Prep: SW3050B / 2/21/14	4 Analyst: RH 2/22/2014 06:58 AM
MOISTURE Moisture	16		A2540 G 0.050	% of samp	ole 1	Analyst: AT 2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

Collection Date: 2/14/2014 10:45 AM

SS-18

Work Order: 1402737

Lab ID: 1402737-10

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.035		0.014	mg/K g-dry	1	2/25/2014 05:51 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	7.8		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
Barium	160		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
Cadmium	ND		0.88	mg/Kg-dry	5	2/22/2014 07:05 PM
Chromium	14		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
Lead	13		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
Selenium	ND		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
Silver	ND		2.2	mg/Kg-dry	5	2/22/2014 07:05 PM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	M	Prep: SW3550 / 2/21/14	Analyst: H L
Acenaphthene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Acenaphthylene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Anthracene	ND		3,8	µg/Kg-dгу	1	2/25/2014 11:54 PM
Benzo(a)anthracene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(a)pyrene	ND		3.8	µg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(b)fluoranthene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(b-k)fluoranthene	ND		7.7	μg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(g,h,i)perylene	ND		3.8	µg/Kg-dry	1	2/25/2014 11:54 PM
Benzo(k)fluoranthene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Chrysene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Dibenzo(a,h)anthracene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Fluoranthene	ND		3.8	µg/Kg-dry	1	2/25/2014 11:54 PM
Fluorene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Indeno(1,2,3-cd)pyrene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Naphthalene	ND		3.8	μg/Kg-d <i>r</i> y	1	2/25/2014 11:54 PM
Phenanthrene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Pyrene	ND		3.8	μg/Kg-dry	1	2/25/2014 11:54 PM
Surr: 2-Fluorobiphenyl	68.8		12-100	%REC	1	2/25/2014 11:54 PM
Surr: 4-Terphenyl-d14	87.0		25-137	%REC	1	2/25/2014 11:54 PM
Surr: Nitrobenzene-d5	67.2		37-107	%REC	1	2/25/2014 11:54 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
1.1.2,2-Tetrachloroethane	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
1.1.2-Trichloroethane	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
1.1-Dichloroethane	ND		35	ug/Kg-dry	1	2/22/2014 05:45 AM
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-18

Collection Date: 2/14/2014 10:45 AM

Work Order: 1402737

Lab ID: 1402737-10

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzeo
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
1,2-Dichloropropane	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
2-Butanone	ND		230	µg/Kg-dry	1	2/22/2014 05:45 AM
2-Hexanone	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Acetone	ND		120	μg/Kg-dry	1	2/22/2014 05:45 AM
Benzene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Bromoform	ND		3 5	μg/Kg-dry	1	2/22/2014 05:45 AM
Bromomethane	ND		88	µg/Kg-dry	1	2/22/2014 05:45 AM
Carbon disulfide	49		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Chloroethane	ND		120	μg/Kg-dry	1	2/22/2014 05:45 AM
Chloroform	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
Chloromethane	ND		120	μg/Kg-dry	1	2/22/2014 05:45 AM
cis-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
cis-1,3-Dichtoropropene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Dibromochioromethane	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Ethylbenzene	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
m,p-Xylene	ND		70	μg/Kg-dry	1	2/22/2014 05:45 AM
Methylene chloride	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
o-Xylene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Styrene	ND		35	µg/Kg-dry	1	2/22/2014 05:45 AM
Tetrachloroethene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Toluene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
trans-1,3-Dichloropropene	ND		3 5	μg/Kg-dry	1	2/22/2014 05:45 AM
Trichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 05:45 AM
Vinyl chloride	N D		35	µg/Kg-dry	1	2/22/2014 05:45 AM
1,2-Dichloroethene, Total	ND		70	µg/Kg-dry	1	2/22/2014 05:45 AM
1,3-Dichloropropene, Total	ND		70	μg/Kg-dry	1	2/22/2014 05:45 AM
Xylenes, Total	ND		110	µg/Kg-dry	1	2/22/2014 05:45 AM
Surr: 1,2-Dichloroethane-d4	97.8		70-130	%REC	1	2/22/2014 05:45 AM
Surr: 4-Bromofluorobenzene	98.2		70-130	%REC	1	2/22/2014 05:45 AM
Surr: Dibromofluoromethane	95.0		70-130	%REC	1	2/22/2014 05:45 AM
Surr: Toluene-d8	99.1		70-130	%REC	1	2/22/2014 05:45 AM
MOISTURE			A2540	G		Analyst: AT
Moisture	15		0.050	% of samp	ole 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-20

Collection Date: 2/14/2014 11:45 AM

Work Order: 1402737

Lab ID: 1402737-11

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.017		0.014	mg/Kg-dry	1	2/25/2014 05:54 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	11		1.8	mg/Kg-dry	5	2/22/2014 07:11 PM
Barium	42		1.8	mg/Kg-dry	5 .	2/22/2014 07:11 PM
Cadmium	ND		0.72	mg/Kg-dry	5	2/22/2014 07:11 PM
Chromium	9.3		1.8	mg/Kg-dry	5	2/22/2014 07:11 PM
Lead	11		1.8	mg/Kg-dry	5	2/22/2014 07:11 PM
Selenium	ND		1.8	mg/Kg-dry	5	2/22/2014 07:11 PM
Silver	ND		1.8	mg/Kg-dry	5	2/22/2014 07:11 PM
SEMI-VOLATILE ORGANIC COMPOUNDS	- SIM		SW8270	ıM	Prep: SW3550 / 2/21/14	Analyst: HL
Acenaphthene	ND		11	µg/Kg-dry	1	2/25/2014 10:47 PM
Acenaphthylene	ND		11	µg/Kg-dry	1	2/25/2014 10:47 PM
Anthracene	ND		11	µg/Kg-dry	1	2/25/2014 10:47 PM
Benzo(a)anthracene	ND		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Benzo(a)pyrene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Benzo(b)fluoranthene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Benzo(b-k)fluoranthene	ND		220	μg/Kg-dry	10	2/25/2014 09:06 PM
Benzo(e)pyrene	ND		33	μg/Kg-dry	1	2/25/2014 10:47 PM
Benzo(g,h,i)perylene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Benzo(k)fluoranthene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Chrysene	ND		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Dibenzo(a,h)anthracene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Fluoranthene	17		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Fluorene	ND		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Indeno(1,2,3-cd)pyrene	ND		110	μg/Kg-dry	10	2/25/2014 09:06 PM
Naphthalene	ND		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Phenanthrene	ND		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Pyrene	15		11	μg/Kg-dry	1	2/25/2014 10:47 PM
Surr: 2-Fluorobiphenyl	78.0		12-100	%REC	1	2/25/2014 10:47 PM
Surr: 4-Terphenyl-d14	91.0		25-137	%REC	1	2/25/2014 10:47 PM
Surr: Nitrobenzene-d5	69.4		37-107	%REC	1	2/25/2014 10:47 PM
VOLATILE ORGANIC COMPOUNDS			SW8260)B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		34	µg/Kg-dry	1	2/22/2014 06:11 AM
1,1,2,2-Tetrachloroethane	ND		34	µg/Kg-dry	1	2/22/2014 06:11 AM
1,1,2-Trichloroethane	ND		34	µg/Kg-dry	1	2/22/2014 06:11 AM
1,1-Dichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
1,1-Dichloroethene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-20

Collection Date: 2/14/2014 11:45 AM

25.30

Work Order: 1402737

Lab ID: 1402737-11

Matrix: SOIL

Analyses	Resnit	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
1,2-Dichloropropane	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
2-Butanone	ND		220	µg/Kg-dry	1	2/22/2014 06:11 AM
2-Hexanone	ND		34	μ g /Kg-dry	1	2/22/2014 06:11 AM
4-Methyl-2-pentanone	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Acetone	ND		110	μg/Kg-dry	1	2/22/2014 06:11 AM
Benzene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Bromodichloromethane	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Bromoform	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Bromomethane	ND		84	µg/Kg-dry	1	2/22/2014 06:11 AM
Carbon disulfide	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Carbon tetrachloride	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Chlorobenzene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Chioroethane	ND		110	μg/Kg-dry	1	2/22/2014 06:11 AM
Chloroform	NĐ		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Chloromethane	ND		110	μg/Kg-dry	1	2/22/2014 06:11 AM
cis-1.2-Dichloroethene	ND		34	µg/Kg-dry	1	2/22/2014 06:11 AM
cis-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Dibromochioromethane	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AN
Ethylbenzene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
m,p-Xylene	NĐ		67	μg/Kg-dry	1	2/22/2014 06:11 AM
Methylene chloride	ND		34	ug/Kg-dry	1	2/22/2014 06:11 AN
o-Xylene	ND.		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Styrene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Tetrachloroethene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
Toluene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AN
trans-1,2-Dichloroethene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AM
trans-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AN
Trichloroethene	ND.		34	ug/Kg-dry	1	2/22/2014 06:11 AM
Vinyl chloride	ND		34	μg/Kg-dry	1	2/22/2014 06:11 AN
1,2-Dichloroethene, Total	ND		67	μg/Kg-dry	1	2/22/2014 06:11 AN
1,3-Dichloropropene, Total	ND		67	μg/Kg-dry	1	2/22/2014 06:11 AN
Xylenes, Total	ND		100	μg/Kg-dry	1	2/22/2014 06:11 AN
Surr: 1,2-Dichloroethane-d4	94.3		70-130	%REC	1	2/22/2014 06:11 AM
Surr: 4-Bromofluorobenzene	97.0		70-130	%REC	1	2/22/2014 06:11 AM
Surr: 4-Bromolluorobenzene Surr: Dibromolluoromethane	94.8		70-130	%REC	1	2/22/2014 06:11 AM
Surr: Toluene-d8	99.3		70-130	%REC	1	2/22/2014 06:11 AM
MOISTURE			A2540	G		Analyst: AT
Moisture	1 1		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Note:

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-21

Work Order: 1402737

Lab ID: 1402737-12

Collection Date: 2/14/2014 11:30 /	Matrix: SOIL						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW747		Prep: SW7471 / 2/24/14	Analyst: LR	
Mercury	0.086		0.010	mg/Kg-dry	1	2/25/2014 05:56 PM	
METALS BY ICP-MS			SW602	0A	Prep: SW3050B / 2/21/14	Analyst: RH	
Arsenic	11		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
Barium	120		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
Cadmium	1.8		0.82	mg/Kg-dry	5	2/22/2014 07:17 PM	
Chromium	9.8		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
Lead	49		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
Selenium	ND		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
Silver	N D		2.1	mg/Kg-dry	5	2/22/2014 07:17 PM	
SEMI-VOLATILE ORGANIC COMPO	OUNDS - SIM		SW827	0 M	Prep: SW3550 / 2/21/14	Analyst: H L	
Acenaphthene	ND		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Acenaphthylene	ND		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Anthracene	ND		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Benzo(a)anthracene	29		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Benzo(a)pyrene	ND		76	µg/Kg-dry	10	2/24/2014 03:23 PM	
Benzo(b)fluoranthene	ND		76	µg/Kg-dry	10	2/24/2014 03:23 PM	
Benzo(b-k)fluoranthene	ND		150	μg/Kg-dry	10	2/24/2014 03:23 PM	
Benzo(e)pyrene	33		23	μg/Kg-d ry	1	2/25/2014 11:21 PM	
Benzo(g,h,i)perylene	N D		7 6	μg/Kg-dry	10	2/24/2014 03:23 PM	
Benzo(k)fluoranthene	ND		76	µg/Kg-dry	10	2/24/2014 03:23 PM	
Chrysene	27		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Dibenzo(a,h)anthracene	ND		76	μg/Kg-dry	10	2/24/2014 03:23 PM	
Fluoranthene	50		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Fluorene	ND		7.6	µg/K g-d ry	1	2/25/2014 11:21 PM	
Indeno(1,2,3-cd)pyrene	ND		76	µg/Kg-dry	10	2/24/2014 03:23 PM	
Naphthalene	ND		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Phenanthrene	21		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Pyrene	55		7.6	μg/Kg-dry	1	2/25/2014 11:21 PM	
Surr: 2-Fluorobiphenyl	57.0		12-100	%REC	1	2/25/2014 11:21 PM	
Surr: 4-Terphenyl-d14	86.8		25-137	%REC	1	2/25/2014 11:21 PM	
Surr: Nitrobenzene-d5	52.4		37-107	%REC	1	2/2 5 /2014 11:21 PM	
VOLATILE ORGANIC COMPOUND	s		SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS	
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM	
1,1,2,2-Tetrachloroethane	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AM	
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM	
1,1-Dichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM	
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM	

Note:

Client: Triad Engineering, Inc.

Project: John's Manville - Riverside Parcels

Sample ID:

SS-21

Collection Date: 2/14/2014 11:30 AM

Date: 27-Feb-14

Work Order: 1402737

Lab ID: 1402737-12

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzeo
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
1,2-Dichioropropane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
2-Butanone	ND		230	µg/Kg-dry	1	2/22/2014 06:37 AM
2-Hexanone	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AM
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Acetone	ND		120	μg/Kg-dry	1	2/22/2014 06:37 AM
Benzene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Bromoform	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AM
Bromomethane	ND		87	μg/Kg-dry	1	2/22/2014 06:37 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Chloroethane	ND		120	μg/Kg-dry	1	2/22/2014 06:37 AM
Chioroform	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Chloromethane	ND		120	μg/Kg-dry	1	2/22/2014 06:37 AM
cis-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
cis-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Dibromochloromethane	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Ethylbenzene	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AN
m,p-Xylene	ND		70	µg/Kg-dry	1	2/22/2014 06:37 AN
Methylene chloride	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
o-Xylene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
Styrene	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AN
Tetrachloroethene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
Toluene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
Trichloroethene	ND		35	μg/Kg-dry	1	2/22/2014 06:37 AN
Vinyl chloride	ND		35	µg/Kg-dry	1	2/22/2014 06:37 AN
1,2-Dichloroethene, Total	ND		70	μg/Kg-dry	1	2/22/2014 06:37 AM
1,3-Dichloropropene, Total	ND		<i>7</i> 0	µg/Kg-dry	1	2/22/2014 06:37 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	2/22/2014 06:37 AM
Surr: 1,2-Dichloroethane-d4	98.0		70-130	%REC	1	2/22/2014 06:37 AM
Surr: 4-Bromofluorobenzene	97.4		70-130	%REC	1	2/22/2014 06:37 AM
Surr: Dibromofluoromethane	95.2		70-130	%REC	1	2/22/2014 06:37 Al
Surr: Toluene-d8	97.9		70-130	%REC	. 1	2/22/2014 06:37 AM
MOISTURE			A2540			Analyst: AT
Moisture	14		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-22

Work Order: 1402737 Lab ID: 1402737-13

Matrix: SOIL

Collection Date: 2/14/2014 02:00 PM

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	-	Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.087		0.014	mg/Kg-dry	1	2/25/2014 05:58 PM
METALS BY ICP-MS			SW602	0 A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	41		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
Barium	350		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
Cadmium	0.92		0.75	mg/Kg-dry	5	2/22/2014 07:23 PM
Chromium	14		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
Lead	45		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
Selenium	ND		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
Sliver	ND		1.9	mg/Kg-dry	5	2/22/2014 07:23 PM
SEMI-VOLATILE ORGANIC COMPOU	NDS - SIM		SW827	OM	Prep: SW3550 / 2/21/14	Analyst: HL
Acenaphthene	ND.		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Acenaphthylene	ND		7,1	μg/Kg-dry	1	2/24/2014 08:29 PM
Anthracene	ND		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(a)anthracene	17		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(a)pyrene	18		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(b)fluoranthene	22		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(b-k)fluoranthene	33		14	μg/Kg-dry	1	2/24/2014 08:29 PM
Вепло(е)ругене	ND		21	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(g,h,i)perylene	29		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Benzo(k)fiuoranthene	11		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Chrysene	15		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Dibenzo(a,h)anthracene	7.1		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Fluoranthene	28		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Fluorene	ND		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Indeno(1,2,3-cd)pyrene	16		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Naphthalene	ND		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Phenanthrene	9.9		7,1	μg/Kg-dry	1	2/24/2014 08:29 PM
Pyrene	21		7.1	μg/Kg-dry	1	2/24/2014 08:29 PM
Surr: 2-Fluorobiphenyl	66.0		12-100	%REC	1	2/24/2014 08:29 PM
Surr: 4-Terphenyl-d14	83.4		25-137	%REC	1	2/24/2014 08:29 PM
Surr: Nitrobenzene-d5	71.8		37-107	%REC	1	2/24/2014 08:29 PM
VOLATILE ORGANIC COMPOUNDS			SW826	30B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1.1-Trichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1.1.2.2-Tetrachloroethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1,1,2-Trichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1,1-Dichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1,1-Dichloroethene	ND		34	ug/Kg-dry	1	2/22/2014 07:04 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SS-22

Collection Date: 2/14/2014 02:00 PM

00-22

Work Order: 1402737

Lab ID: 1402737-13

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1,2-Dichloropropane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
2-Butanone	ND		220	μg/Kg-dry	1	2/22/2014 07:04 AM
2-Нехаполе	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
4-Methyl-2-pentanone	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Acetone	ND		110	μg/Kg-dry	1	2/22/2014 07:04 AM
Benzene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Bromodichloromethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Bromoform	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Bromomethane	ND		84	μg/Kg-dry	1	2/22/2014 07:04 AM
Carbon disulfide	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Carbon tetrachloride	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Chlorobenzene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Chloroethane	ND		110	µg/Kg-dry	1	2/22/2014 07:04 AM
Chloroform	ND		34	µg/Kg-dry	1	2/22/2014 07:04 AM
Chłoromethane	ND		110	μg/Kg-dτy	1	2/22/2014 07:04 AM
cis-1,2-Dichloroethene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
cis-1,3-Dichloropropene	ND		34	μ g /Kg-αίτγ	1	2/22/2014 07:04 AM
Dibromochloromethane	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Ethylbenzene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
m,p-Xylene	ND		67	µg/Kg-dry	1	2/22/2014 07:04 AM
Methylene chloride	77	В	34	μg/Kg-dry	1	2/22/2014 07:04 AM
o-Xylene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Styrene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Tetrachloroethene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Toluene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
trans-1,2-Dichloroethene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
trans-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Trichloroethene	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
Vinyl chloride	ND		34	μg/Kg-dry	1	2/22/2014 07:04 AM
1,2-Dichloroethene, Total	ND		67	μg/Kg-dry	1	2/22/2014 07:04 AM
1,3-Dichloropropene, Total	ND		67	μg/Kg-dry	1	2/22/2014 07:04 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	2/22/2014 07:04 AM
Surr: 1,2-Dichloroethane-d4	98.0		70-130	%REC	1	2/22/2014 07:04 AN
Surr: 4-Bromofluorobenzene	98.0		70-130	%REC	1	2/22/2014 07:04 AN
Surr: Dibromofluoromethane	94.0		70-130	%REC	1	2/22/2014 07:04 AM
Surr: Toluene-d8	100		70-130	%REC	1	2/22/2014 07:04 AN
MOISTURE			A2540	G		Analyst: AT
Moisture	11		0.050	% of sam	ple 1	2/20/2014 10:11 AN

Note:

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-18

Collection Date: 2/14/2014 11:00 AM

Work Order: 1402737

Lab ID: 1402737-14

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.040		0.016	mg/Kg-dry	1	2/25/2014 06:00 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	9.0		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
Barium	120		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
Cadmium	ND		0.91	mg/Kg-dry	5	2/22/2014 07:47 PM
Chromium	14		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
Lead	15		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
Selenium	ND		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
Silver	ND		2.3	mg/Kg-dry	5	2/22/2014 07:47 PM
SEMI-VOLATILE ORGANIC COMPO	JNDS - SIM		SW8270	M	Prep: SW3550 / 2/21/14	Analyst: HL
Acenaphthene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Acenaphthylene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Anthracene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(a)anthracene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(a)pyrene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(b)fluoranthene	ND		7.9	µg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(b-k)fluoranthene	ND		16	µg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(e)pyrene	ND		24	μg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(g,h,i)perylene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Benzo(k)fluoranthene	ND		7,9	μg/Kg-dry	1	2/24/2014 09:02 PM
Chrysene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Dibenzo(a,h)anthracene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Fluoranthene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Fluorene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Indeno(1,2,3-cd)pyrene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Naphthalene	ND		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Phenanthrene	ND		7.9	µg/Kg-dry	1	2/24/2014 09:02 PM
Pyrene	ND.		7.9	μg/Kg-dry	1	2/24/2014 09:02 PM
Surr: 2-Fluorobiphenyl	85.4		12-100	%REC	1	2/24/2014 09:02 PM
Surr: 4-Terphenyl-d14	94.6		25-137	%REC	1	2/24/2014 09:02 PM
Sur: Nitrobenzene-d5	77.0		37-107	%REC	1	2/24/2014 09:02 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
1,1,2,2-Tetrachloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
1.1-Dichloroethane	ND		36	μg/Kg-dry	1	2/2 2 /2014 07:30 AM
1.1-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-18

Collection Date: 2/14/2014 11:00 AM

Work Order: 1402737

Lab ID: 1402737-14

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzeo
1,2-Dichioroethane	ND	1.11 THE	36	μg/Kg-dry	1	2/22/2014 07:30 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
2-Butanone	ND		240	μg/Kg-dry	1	2/22/2014 07:30 AM
2-Hexanone	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Acetone	ND		120	µg/Kg-dry	1	2/22/2014 07:30 AM
Benzene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AM
Bromodichloromethane	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AM
Bromoform	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Bromomethane	ND		91	μg/Kg-dry	1	2/22/2014 07:30 AM
Carbon disulfide	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Carbon tetrachloride	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Chlorobenzene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AM
Chioroethane	ND		120	μg/Kg-dry	1	2/22/2014 07:30 AM
Chioroform	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Chloromethane	ND		120	µg/Kg-dry	1	2/22/2014 07:30 AM
cis-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
cis-1,3-Dichloropropene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AM
Dibromochloromethane	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Ethylbenzene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AN
m,p-Xytene	ND		73	μg/Kg-dry	1	2/22/2014 07:30 AM
Methylene chloride	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
o-Xylene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AM
Styrene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AN
Tetrachloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AN
Toluene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AN
trans-1,2-Dichloroethene	ND		36	µg/Kg-dry	1	2/22/2014 07:30 AN
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Trichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
Vinyl chloride	ND		36	μg/Kg-dry	1	2/22/2014 07:30 AM
1,2-Dichloroethene, Total	ND		73	μg/Kg-dry	1	2/22/2014 07:30 AM
1,3-Dichloropropene, Total	ND		73	µg/Kg-dry	1	2/22/2014 07:30 AN
Xylenes, Total	ND		110	μg/Kg-dry	1	2/22/2014 07:30 AN
Surr: 1,2-Dichloroethane-d4	96.8		70-130	%REC	1	2/22/2014 07:30 AM
Surr: 4-Bromofluorobenzene	99.6		70-130	%REC	1	2/22/2014 07:30 AN
Surr: Dibromofluoromethane	96.2		70-130	%REC	1	2/22/2014 07:30 AN
Surr: Toluene-d8	100		70-130	%REC	1	2/22/2014 07:30 AN
MOISTURE			A2540			Analyst: AT
Moisture	17		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-19

Collection Date: 2/14/2014 11:30 AM

Work Order: 1402737

Lab ID: 1402737-15

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.034		0.017	mg/Kg-dry	1	2/25/2014 06:03 PM
METALS BY ICP-MS			SW6020)A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	8,6		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
Barium	110		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
Cadmium	ND		0.78	mg/Kg-dry	5	2/22/2014 07:53 PM
Chromium	14		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
Lead	11		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
Selenium	ND		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
Silver	ND		1.9	mg/Kg-dry	5	2/22/2014 07:53 PM
SEMI-VOLATILE ORGANIC COMPOUNE	S - SIM		SW8270	M	Prep: SW3550 / 2/21/14	Analyst: HL
Acenaphthene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Acenaphthylene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Anthracene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(a)anthracene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(a)pyrene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(b)fluoranthene	7.9	J	7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(b-k)fluoranthene	ND		16	μg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(e)pyrene	ND		24	μg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(g,h,i)perylene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Benzo(k)fluoranthene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Chrysene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Dibenzo(a,h)anthracene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Fluoranthene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Fluorene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Indeno(1,2,3-cd)pyrene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Naphthalene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Phenanthrene	ND		7.9	µg/Kg-dry	1	2/26/2014 12:28 PM
Pyrene	ND		7.9	μg/Kg-dry	1	2/26/2014 12:28 PM
Surr: 2-Fluorobiphenyl	60.6		12-100	%REC	1	2/26/2014 12:28 PM
Surr: 4-Terphenyl-d14	104		25-137	%REC	1	2/26/2014 12:28 PM
Surr: Nitrobenzene-d5	65.2		37-107	%REC	1	2/26/2014 12:28 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep: SW5035 / 2/21/14	Analyst: RS
1,1,1-Trichloroethane	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
1,1,2,2-Tetrachloroethane	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
1,1-Dichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
1.1-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM

Note:

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-19

D; 20-1

Collection Date: 2/14/2014 11:30 AM

Work Order: 1402737

Lab ID: 1402737-15

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
2-Butanone	ND		240	μg/Kg-dry	1	2/22/2014 07:56 AM
2-Hexanone	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Acetone	ND		120	μg/Kg-dry	1	2/22/2014 07:56 AM
Benzene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Bromodichloromethane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Bromoform	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Bromomethane	ND		91	μg/Kg-dry	1	2/22/2014 07:56 AM
Carbon disulfide	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Carbon tetrachloride	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Chlorobenzene	ND		36	μ g/ Kg-dry	1	2/22/2014 07:56 AM
Chloroethane	ND		120	μg/Kg-dry	1	2/22/2014 07:56 AM
Chloroform	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
Chloromethane	ND		120	μg/Kg-dry	1	2/22/2014 07:56 AM
cis-1,2-Dichioroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
cis-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Dibromochloromethane	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Ethylbenzene	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
m,p-Xylene	ND		72	μg/Kg-dry	1	2/22/2014 07:56 AM
Methylene chloride	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
o-Xylene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Styrene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Tetrachloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Toluene	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
trans-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
trans-1,3-Dichloropropene	ND		36	µg/Kg-dry	1	2/22/2014 07:56 AM
Trichloroethene	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
Vinyl chloride	ND		36	μg/Kg-dry	1	2/22/2014 07:56 AM
1,2-Dichloroethene, Total	ND		72	μg/Kg-dry	1	2/22/2014 07:56 AM
1,3-Dichloropropene, Total	ND		72	μg/Kg-dry	1	2/22/2014 07:56 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	2/22/2014 07:56 AM
Surr: 1,2-Dichloroethane-d4	95.6		70-130	%REC	1	2/22/2014 07:56 AM
Surr: 4-Bromofluorobenzene	94.6		70-130	%REC	1	2/22/2014 07:56 AN
Surr: Dibromofluoromethane	94.2		70-130	%REC	1	2/22/2014 07:56 AM
Surr: Toluene-d8	97.6		70-130	%REC	1	2/22/2014 07:56 AN
MOISTURE			A2540			Analyst: AT
Moisture	17		0.050	% of sam	ple 1	2/20/2014 10:11 AM

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-21

Collection Date: 2/14/2014 01:45 PM

Work Order: 1402737

Lab ID: 1402737-16

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA	-		SW747	1	Prep: SW7471 / 2/24/14	Analyst: LR
Mercury	0.054		0.016	mg/Kg-dry	1	2/25/2014 06:05 PM
METALS BY ICP-MS			SW602	0A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	9.9		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
Barium	130		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
Cadmium	ND		0.90	mg/Kg-dry	5	2/22/2014 07:59 PM
Chromium	15		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
Lead	16		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
Selenium	ND		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
Silver	ND		2.3	mg/Kg-dry	5	2/22/2014 07:59 PM
SEMI-VOLATILE ORGANIC COMPOUI	NDS - SIM		SW827	om.	Prep: SW3550 / 2/21/14	Analyst: HL
Acenaphthene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Acenaphthylene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Anthracene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(a)anthracene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(a)pyrene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(b)fluoranthene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(b-k)fluoranthene	ND		17	µg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(e)pyrene	ND		25	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(g,h,i)perylene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Benzo(k)fluoranthene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Chrysene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Dibenzo(a,h)anthracene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Fluoranthene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Fluorene	ND		8.5	ug/Kg-dry	1	2/24/2014 09:36 PM
Indeno(1,2,3-cd)pyrene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Naphthalene	N D		8,5	μg/Kg-dry	1	2/24/2014 09:36 PM
Phenanthrene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Pyrene	ND		8.5	μg/Kg-dry	1	2/24/2014 09:36 PM
Surr: 2-Fluorobiphenyl	64.0		12-100	%REC	1	2/24/2014 09:36 PM
Surr: 4-Terphenyl-d14	97.6		25-137	%REC	1	2/24/2014 09:36 PM
Surr: Nitrobenzene-d5	80.6		37-107	%REC	1	2/24/2014 09:36 PM
VOLATILE ORGANIC COMPOUNDS			SW826	60B	Prep: SW5035 / 2/21/14	Analyst: RS
1.1.1-Trichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
1,1,2,2-Tetrachloroethane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
1,1,2-Trichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
1,1-Dichloroethane	ND		39	µg/Kg-dry	1	2/22/2014 08:22 AM
1.1-Dichloroethene	ND.		39	ug/Kg-dry	1	2/22/2014 08:22 AM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-21

3D-Z

Collection Date: 2/14/2014 01:45 PM

Work Order: 1402737

Lab ID: 1402737-16

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
1,2-Dichloropropane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
2-Butanone	ND		260	μg/Kg-dry	1	2/22/2014 08:22 AM
2-Hexanone	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
4-Methyl-2-pentanone	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Acetone	ND		130	μg/Kg-dry	1	2/22/2014 08:22 AM
Benzene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Bromodichloromethane	ND		39	µg/Kg-dry	1	2/22/2014 08:22 AM
Bromoform	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Bromomethane	ND		97	μg/Kg-dry	1	2/22/2014 08:22 AM
Carbon disulfide	65		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Carbon tetrachloride	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Chlorobenzene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Chloroethane	ND		130	μg/Kg-dry	1	2/22/2014 08:22 AM
Chloroform	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Chloromethane	ND		130	μg/Kg-dry	1	2/22/2014 08:22 AM
cis-1,2-Dichloroethene	ND		39	μ g /Kg-dry	1	2/22/2014 08:22 AM
cis-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Dibromochioromethane	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Ethylbenzene	ND		39	µg/Kg-dry	1	2/22/2014 08:22 AM
m,p-Xylene	ND		78	μg/Kg-dry	1	2/22/2014 08:22 AM
Methylene chloride	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
o-Xylene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Styrene	ND		39	µg/Kg-dry	1	2/22/2014 08:22 AM
Tetrachloroethene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Toluene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
trans-1,2-Dichtoroethene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
trans-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Trichloroethene	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
Vinyl chloride	ND		39	μg/Kg-dry	1	2/22/2014 08:22 AM
1,2-Dichloroethene, Total	ND		78	μg/Kg-dry	1	2/22/2014 08:22 AM
1,3-Dichloropropene, Total	ND		78	μg/Kg-dry	1	2/22/2014 08:22 AM
Xylenes, Total	ND		120	µg/Kg-dry	1	2/22/2014 08:22 AM
Surr: 1,2-Dichloroethane-d4	97.8		70-130	%REC	1	2/22/2014 08:22 AM
Surr: 4-Bromofluorobenzene	96.0		70-130	%REC	1	2/22/2014 08:22 AM
Surr: Dibromofluoromethane	94.6		70-130	%REC	1	2/22/2014 08:22 AN
Surr: Toluene-d8	97.8		70-130	%REC	1	2/22/2014 08:22 AM
MOISTURE			A2540	G		Analyst: AT
Moisture	23		0.050	% of sam	ple 1	2/20/2014 04:57 PM

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-22

Collection Date: 2/14/2014 02:15 PM

Work Order: 1402737

Lab ID: 1402737-17

Matrix: SOIL

Collection Date: 2/14/2014 02:15 PM				Mantx. Soil					
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed			
MERCURY BY CVAA			SW747	1	Prep: SW7471 / 2/24/14	Analyst: LR			
Mercury	0.24		0.019	mg/Kg-dry	1	2/25/2014 06:07 PM			
METALS BY ICP-MS			SW602	0A	Prep: SW3050B / 2/21/14	Analyst: R H			
Arsenic	130		2,9	mg/Kg-dry	5	2/22/2014 08:05 PM			
Barium	120		2.9	mg/Kg-dry	5	2/22/2014 08:05 PM			
Cadmium	ND		1.2	mg/Kg-dry	5	2/22/2014 08:05 PM			
Chromium	3 2		2.9	mg/Kg-dry	5	2/22/2014 08:05 PM			
Lead	69		2.9	mg/Kg-dry	5	2/22/2014 08:05 PM			
Selenium	9.1		2.9	mg/Kg-dry	5	2/22/2014 08:05 PM			
Silver	ND		2.9	mg/Kg-dry	5	2/22/2014 08:05 PM			
SEMI-VOLATILE ORGANIC COMPOUN	IDS - SIM		SW827	oM	Prep: SW3550 / 2/21/14	Analyst: HL			
Acenaphthene	ND		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Acenaphthylene	ND		91	µg/Kg-dry	10	2/24/2014 05:05 PM			
Anthracene	ND		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(a)anthracene	130		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(a)pyrene	120		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(b)fluoranthene	130		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(b-k)fiuoranthene	210		180	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(e)pyrene	ND		270	μg/Kg-dry	10	2/24/2014 05:05 PM			
Benzo(g,h,i)perylene	ND		91	μg/ K g-dry	10	2/24/2014 05:05 PM			
Benzo(k)fluoranthene	ND		91	μ g /Kg-dry	10	2/24/2014 05:05 PM			
Chrysene	110		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Dibenzo(a,h)anthracene	ND		91	μg/Kg-d≀y	10	2/24/2014 05:05 PM			
Fluoranthene	190		91	µg/Kg-dry	10	2/24/2014 05:05 PM			
Fluorene	ND		91	µg/Kg-dry	10	2/24/2014 05:05 PM			
Indeno(1,2,3-cd)pyrene	ND		91	µg/Kg-dry	10	2/24/2014 05:05 PM			
Naphthalene	ND		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Phenanthrene	100		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Pyrene	170		91	μg/Kg-dry	10	2/24/2014 05:05 PM			
Surr: 2-Fluorobiphenyl	64.0		12-100	%REC	10	2/24/2014 05:05 PM			
Sum: 4-Terphenyl-d14	76.0		25-137	%REC	10	2/24/2014 05:05 PM			
Surr: Nitrobenzene-d5	52.0		37-107	%REC	10	2/24/2014 05:05 PM			
VOLATILE ORGANIC COMPOUNDS			SW820	80B	Prep: SW5035 / 2/21/14	Analyst: RS			
1,1,1-Trichloroethane	ND		43	μg/Kg-d <i>r</i> y	1	2/22/2014 08:49 AM			
1,1,2,2-Tetrachloroethane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM			
1,1,2-Trichloroethane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM			
1,1-Dichloroethane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM			
1.1-Dichloroethene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM			

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

SB-22

Collection Date: 2/14/2014 02:15 PM

Work Order: 1402737

Lab ID: 1402737-17

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
1,2-Dichloropropane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
2-Butanone	ND		290	μg/Kg-dry	1	2/22/2014 08:49 AM
2-Hexanone	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
4-Methyl-2-pentanone	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Acetone	ND		140	μg/Kg-dry	1	2/22/2014 08:49 AM
Benzene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Bromodichloromethane	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Bromoform	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Bromomethane	ND		110	μg/Kg-dry	1	2/22/2014 08:49 AM
Carbon disulfide	100		43	μg/ Kg-dry	1	2/22/2014 08:49 AM
Carbon tetrachloride	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Chlorobenzene	ND		43	µg/Kg-dry	1	2/22/2014 08:49 AM
Chloroethane	ND		140	μg/Kg-dry	1	2/22/2014 08:49 AM
Chloroform	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Chloromethane	ND		140	µg/Kg-dry	1	2/22/2014 08:49 AM
cis-1,2-Dichloroethene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
cis-1,3-Dichloropropene	ND		43	μ g /Kg-dry	1	2/22/2014 08:49 AM
Dibromochloromethane	ND		43	μg/Kg- d ry	1	2/22/2014 08:49 AM
Ethylbenzene	N D		43	µg/Kg-dry	1	2/22/2014 08:49 AM
m.p-Xylene	ND		86	μg/Kg-dry	1	2/22/2014 08:49 AM
Methylene chioride	ND		43	μ g/ Kg-dry	1	2/22/2014 08:49 AM
o-Xylene	ND		43	µg/Kg-dry	1	2/22/2014 08:49 AM
Styrene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Tetrachloroethene	ND		43	µg/Kg-dry	1	2/22/2014 08:49 AM
Toluene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
trans-1,2-Dichloroethene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
trans-1,3-Dichloropropene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Trichloroethene	ND		43	μg/Kg-dry	1	2/22/2014 08:49 AM
Vinyl chloride	ND		43	µg/Kg-dry	1	2/22/2014 08:49 AM
1,2-Dichloroethene, Total	ND		86	μg/Kg-dry	1	2/22/2014 08:49 AM
1,3-Dichioropropene, Total	ND		86	µg/Kg-dry	1	2/22/2014 08:49 AM
Xvienes, Total	ND		130	μg/Kg-dry	1	2/22/2014 08:49 AM
Surr: 1,2-Dichloroethane-d4	99.0		70-130	%REC	1	2/22/2014 08:49 AN
Surr: 4-Bromofluorobenzene	97.4		70-130	%REC	1	2/22/2014 08:49 AN
Surr: Dibromofluoromethane	96.2		70-130	%REC	1	2/22/2014 08:49 AM
Surr: Toluene-d8	98.2		70-130	%REC	1	2/22/2014 08:49 AM
MOISTURE			A2540	G		Aπalyst: ΑΤ
Moisture	30		0.050	% of sam	ple 1	2/20/2014 04:57 PN

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

Moisture

Note:

BG-3

Lab ID: 1402737-18 Matrix: SOIL

Work Order: 1402737

Collection Date: 2/14/2014 03:20 PM

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS			SW6020	A	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	7,2		2.0	mg/Kg-dry	5	2/22/2014 08:11 PM
MOISTURE			A2540 G			Ánalyst: AT
Moisture	17		0.050	% of samp	ie 1	2/20/2014 10:11 AM

Client: Triad Engineering, Inc.

Project: John's Manville - Riverside Parcels

Sample ID: BG-4

Collection Date: 2/14/2014 03:30 PM

Date: 27-Feb-14

Work Order: 1402737

Lab ID: 1402737-19

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS Arsenic	6.1		SW6020 2.1)A mg/Kg-dr	Prep: SW3050B / 2/21/1 y 5	4 Analyst: RH 2/22/2014 08:17 PM
MOISTURE Moisture	18		A2540 G 0.050	% of sam	ple 1	Analyst: AT 2/20/2014 04:57 PM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

BG-5

Collection Date: 2/14/2014 03:40 PM

Work Order: 1402737

Lab ID: 1402737-20

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS Arsenic	6.6		SW6020 2.0	A mg/Kg-dry	Prep: SW3050B / 2/21/14	4 A nalyst: RH 2/22/2014 08:23 PM
MOISTURE Moisture	19		A2540 G 0.050	6 % of samp	ole 1	Analyst: A T 2/20/2014 04:57 PM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

BG-6

Collection Date: 2/14/2014 03:50 PM

Work Order: 1402737

Lab ID: 1402737-21

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Dilution		Date Analyzed
METALS BY ICP-MS Arsenic	6.3		SW6020 2.1	A mg/Kg-dry	Prep: SW3050B / 2/21/14	4 Analyst: RH 2/22/2014 08:29 PM
MOISTURE Moisture	21		A2540 G 0.050	i % of samp	ole 1	Analyst: AT 2/20/2014 04:57 PM

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

Note:

John's Manville - Riverside Parcels

Sample ID:

BG-7

Work Order: 1402737

Lab ID: 1402737-22

Collection Date: 2/14/2014 04:00 PM	Matrix: SOIL										
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed					
METALS BY ICP-MS Arsenic	17		SW6020 2.0	0A mg/Kg-dry	Prep: SW3050B / 2/21/1	4 Analyst: RH 2/23/2014 11:11 PM					
MOISTURE Moisture	20		A2540 (0.050	G % of samp	pie 1	Analyst: AT 2/20/2014 04:57 PM					

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

BG-8

Work Order: 1402737

Lab ID: 1402737-23

Collection Date: 2/14/2014 04:10 PM		Matrix: SOIL							
Analyses	Result	Qual	Report Limit	Units	Date Analyzed				
METALS BY ICP-MS Arsenic	7.8		SW602	0A mg/Kg-dry	Prep: SW3050B / 2 /21/14	Analyst: RH 2/23/2014 11:17 PM			
MOISTURE Moisture	28		A2540 (0.050	G % of samp	ole 1	Analyst: AT 2/20/2014 10:11 AM			

Client: Triad Engineering, Inc.

Project: John's Manville - Riverside Parcels

Sample ID: BG-9

Collection Date: 2/14/2014 04:20 PM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS			SW6020	Ą	Prep: SW3050B / 2/21/14	Analyst: RH
Arsenic	10		2.3	mg/Kg-dry	, 5	2/23/2014 11:23 PM
MOISTURE			A2540 G			Analyst: AT
Moisture	25		0.050	% of samp	ole 1	2/20/2014 10:11 AM

Date: 27-Feb-14

Lab ID: 1402737-24

Work Order: 1402737

Client: Triad Engineering, Inc.

Project: John's Manville - Riverside Parcels

Sample ID: BG-10

Collection Date: 2/14/2014 04:30 PM

Date: 27-Feb-14

Work Order: 1402737

Lab ID: 1402737-25

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
METALS BY ICP-MS Arsenic	12		SW6020 2.4	A mg/Kg-dry	Prep: SW3050B / 2/21/14	Analyst: RH 2/23/2014 11:48 PM
MOISTURE Moisture	28		A2540 G 0.050	% of samp	ole 1	Analyst: AT 2/20/2014 04:57 PM

Note:

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

John's Manville - Riverside Parcels

Sample ID:

Trip Blank

Collection Date: 2/14/2014

Work Order: 1402737

Lab ID: 1402737-26

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS			SW826	0		Analyst: RS
1,1,1-Trichloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,1,2,2-Tetrachloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,1,2-Trichloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,1-Dichloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,1-Dichloroethene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,2-Dichloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,2-Dichloropropane	ND		2.0	μg/L	1	2/25/2014 12:40 PM
2-Butanone	ND		5.0	μg/L	1	2/25/2014 12:40 PM
2-Hexanone	ND		5.0	μg/L	1	2/25/2014 12:40 PM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	2/25/2014 12:40 PM
Acetone	ND		20	μg/L	1	2/25/2014 12:40 PM
Benzene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Bromodichloromethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Bromoform	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Bromomethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Carbon disulfide	ND		2.5	μg/L	1	2/25/2014 12:40 PM
Carbon tetrachloride	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Chiorobenzene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Chloroethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Chloroform	ND		1.0	µg/∟	1	2/25/2014 12:40 PM
Chloromethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
cis-1,2-Dichloroethene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Dibromochloromethane	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Ethylbenzene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
m,p-Xylene	ND		2.0	μg/L	1	2/25/2014 12:40 PM
Methylene chloride	ND		5.0	μg/L	1	2/25/2014 12:40 PM
o-Xylene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Styrene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Tetrachioroethene	ND		2.0	μg/L	1	2/25/2014 12:40 PM
Toluene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Trichloroethene	ND		1.0	μg/L	1	2/25/2014 12:40 PM
Vinyl chloride	ND		1.0	μg/L	1	2/25/2014 12:40 PM
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	2/25/2014 12:40 PM
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	2/25/2014 12:40 PM
Xylenes, Total	ND		3.0	μg/L	1	2/25/2014 12:40 PM
Surr: 1,2-Dichloroethane-d4	97.5		70-120	%REC	1	2/25/2014 12:40 PM

See Qualifiers page for a list of qualifiers and their definitions. Note:

Date: 27-Feb-14

Client:

Triad Engineering, Inc.

Project:

Note:

John's Manville - Riverside Parcels

Sample ID:

Trip Blank

Collection Date: 2/14/2014

Work Order: 1402737

Lab ID: 1402737-26

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 4-Bromofluorobenzene	100		75-120	%REC	1	2/25/2014 12:40 PM
Surr: Dibromofluoromethane	96.0		85-115	%REC	1	2/25/2014 12:40 PM
Surr: Toluene-d8	98.8		85-120	%REC	1	2/25/2014 12:40 PM

Date: 27-Feb-14

QC BATCH REPORT

ALS Group USA, Corp

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56020	Instrument ID HG1		Method	: SW7 47	1					
MBLK	Sample ID: MBLK-56020-5602	·O			Units: mg/	Kq	Analys	sis Date: 2/2	4/2014 0	3:48 PM
Client ID:	•	 1 ID: HG1 _	140224A		SeqNo:2652482		Prep Date: 2/24/2014		DF: 1	
	Result			SPK Ref Value	%REC	Control Li m it	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte					701120					
Mercury	ND	0.020		···						
LCS	Sample ID: LCS-56020-56020				Units: mg/	-	•	sis Date: 2/2		3:50 PM
Client ID:	Rui	n ID: HG1 _	140224A		SeqNo:265	2483	Prep Date: 2/2	4/2014	DF:1	
Analyte	Result	PQI	_ SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1956	0.020	0.1665		0 117	80-120	()		
MS	Sample ID: 1402737-05BMS				Units: mg/	Kg	Analy	sis Date: 2/2	24/2014 0	4:04 PM
Client ID: SS-19 w	vith MS/MSD Ru	n I D: HG1 _	140224A		SeqNo:265	2490	Prep Date: 2/2	4/2014	DF: 1	
Analyte	Resul	t PQI	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0,1508	3 0.01:	2 0.1009	0.03	55 114	75-125	i (0		
MS	Sample ID: 1402737-06BMS				Units: mg/	'Kg	Analy	sis Date: 2/	24/2014 0	4:11 PM
Client ID: SB-20 v		IG1_140224A		SeqNo:265249		Prep Date: 2/2	4/2014	DF: 1		
Analyte	Resul	t PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Мегситу	0.166	3 0.01	3 0.1094	0.034	62 120	75-125	5	0		
MSD	Sample ID: 1402737-05BMSD				Units: mg	/Kg	Analy	sis Date: 2/	24/2014 0	4:06 PN
Client ID: SS-19 v	·	n ID: HG 1_	_140224A		SeqNo:265	-	Prep Date: 2/2	24/2014	DF: 1	
	Resul	t PQ	L SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
Analyte	0.161			0.03		75-125	0.150	8 6.7	35	
Mercury					Units: mg			sis Date: 2/	25/2014 0	5·49 PM
MSD Client ID: SB-20 v	Sample ID: 1402737-06BMSD	, m ID: HG1 _	140225A		SegNo:265	_	Prep Date: 2/2		DF: 1	0,10 11
n p p p p p p p p p p p p p p p p p p p	Resul	·	_	SPK Ref Value	%REC	Contro		%RPD	RPD Limit	Qual
Analyte	0.15.			0.034		75-125	5 0.166		35	
Mercury			***************************************					1		
The following sai	mples were analyzed in this batc	:h:	1402737-01B 1402737-04B 1402737-10B 1402737-13B 1402737-16B	14 14 14	402737-02B 402737-05B 402737-11B 402737-14B 402737-17B	14 14	402737-03B 402737-06B 402737-12B 402737-15B			

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55977	Instrument ID ICPMS1		Method	: SW602	0A						
MBLK	Sample ID: MBLK-55977-55977				U	nits: mg/l	\g	Analy	sis Date: 2/	22/2014 0	5:23 AM
Client ID:	Run IC	: ICPMS1	_140221A		Sec	No:2650	124	Prep Date: 2/2	1/2014	DF: 1	
				SPK Ref Value			Control Limit	RPD Ref Value	0/ DDD	RPD Limit	Qual
Analyte	Result	PQL	SPK Val	value	•••	%REC	Limit	· · · · · · · · · · · · · · · · · · ·	%RPD		Quai
Arsenic	ND	0.25									
Barium	ND	0.25									
Cadmium	0.001188	0.10									J
Chromium	ND	0.25	****								
Lead	0.002902	0.25									J
Selenium	ND	0.25									
Silver	ND	0.25									
LCS	Sample ID: LCS-55977-55977	•			U	inits: mg/	Kg	Analy	rsis Date: 2	22/2014 0	5:29 AN
Client ID:	Run II	D: ICPMS1	_140221A		SeqNo: 265012 5			Prep Date: 2/21/2014		DF: 1	
A L - 4 -	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte											
Arsenic	4.566	0.25	5		0	91.3	80-120		0		
Barium	4.722	0.25	5		0	94.4	80-120		0		
Cadmium	4.687	0.10	5		0	93.7	80-120		0		
Chromium	4.562	0.25	5		0	91.2	80-120		0		
Lead	4.786	0.25	5		0	95.7	80-120		0		
Selenium	4.306	0.25	5		0	86.1	80-120		0		
Silver	4.539	0.25	5		0	90.8	80-120		0		
MS	Sample ID: 1402737-05BMS				ι	Jnits: mg/	Kg	Analy	ysis Date: 2	/22/2014 (6:29 AN
Client ID: SS-19 w	vith MS/MSD Run I	D: ICPMS	1_140221A		\$ e	qNo:265	0135	Prep Date: 2/2	21/2014	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	13.87	1.9	7.452	7	64	83.6	75-125		0		
Arsenic	164.2	1.9	7.452	16		49.5	75-125		0		so
Barium	7.001	0.75	7.452	0,25		90.6	75-125		0		
Cadmium	21.52	1.9	7.452	12		117	75-125		0		
Chromium	19.05	1.9	7.452	12		83.7	75-125		0		
Lead	7.124	1.9	7.452	1.3		77.9	75-125		0		
Selenium Silver	6.289	1.9	7.452	0.0		84	75-125		0	*******	

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55977	Instrument I	DICPMS1		Method	: SW6020A						
ws	Sample ID: 14027	37-09AMS			l	Jnits:mg/l	(g	Analysi	s Date: 2/2	22/2014 0	7:10 AN
Client ID: BG-2 with	MS/MSD	Run ID:	ICPMS1	_140221A	Se	qNo: 265 0	142	Prep Date: 2/21/	2014	DF: 5	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
Arsenic		12.09	1.7	6.676	6.158	88.8	75-125	0			
Barium		149	1.7	6.676	137.4	174	75-125	0			so
Cadmium		6.389	0.67	6.676	0.1873	92.9	75-125	0			
Chromium		18.69	1.7	6.676	10.23	127	75-125	0			S
Lead		15.96	1.7	6.676	9.927	90.4	75-125	0			
Selenium		7.25	1.7	6.676	1.002	93.6	75-125	0			
Silver		5.921	1.7	6.676	0.02893	88.3	75-125	0			
WISD	Sample ID: 1402 7	/37-05BMSD			Į	Jnits: mg/	Kg	Analysi	s Date: 2/2	22/2014 0	6:35 AI
Client ID: SS-19 with	MS/MSD	Run ID:	ICPMS	_140221A	Se	eqNo:2650	136	Prep Date: 2/21	/2014	DF: 5	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Arsenic		13.66	1.8	7.267	7.64	82.8	75-125	13.87	1.54	25	
Barium		183.5	1.8	7.267	160.5	316	75-125	164.2	11.1	25	so
Cadmium		6.828	0.73	7.267	0.2524	90.5	75-125	7.001	2.5	25	
Chromium		21.04	1.8	7.267	12.81	113	75-125	21.52	2.28	25	
Lead	<u> </u>	18.68	1.8	7.267	12.81	80.7	75-125	19.05	1.99	2 5	
Selenium		6.944	1.8	7.267	1.322	77.4	75-125	7.124	2.55	25	
Silver		6.116	1.8	7.267	0.028	83.8	75-125	6.289	2.8	25	
MSD	Sample ID: 1402	737-09AMSD				Units: mg/	Kg	Analys	is Date: 2/	22/2014 0	7:16 A
Client ID: BG-2 with	MS/MSD	Run ID	: ICPMS	1_140221A	Se	SeqNo:2650143		Prep Date: 2/21/2014		DF: 5	
					SPK Ref		Control	RPD Ref		RPD	
Anaiyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qua
Arsenic		12.78	1.7	6.649	6.158	99.6	75-125	12.09	5.55	25	
Barium		153.5	1.7	6.649	137.4	241	75-125	149	2.93	25	so
Cadmium		6.782	0,66	6.649	0.1873	99.2	75-125	6.389	5.97	2 5	
Chromium		18.81	1.7	6.649	10.23	129	75-125	18.69	0.63	25	S
Lead		17.07	1.7	6.649	9.927	107	75-125	15.96	6.72	25	
Selenium		7.184	1.7	6.649	1.002	93	75-125	7 .2 5	0.907	25_	
Silver		6.067	1.7	6.649	0.02893	90.8	75-125	5.9 2 1	2.43	25	
The following samp	oles were analyzed	in this batch:	14	102737-01B	1402	737-02B	14	02737-03B			
	-		14	102737-04B		737 - 05B		02737-07A			
				102737-08A		737-09A		02737-10B			
				102737-11B		737-12B		02737-13B			
			!	102737-14B		737-15B 737-18A		102737-16B 102737-19 A	!		
				402737-17B 402737-20A		737-18A 737-21A	14	OE191-19M			

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55983	Instrument ID ICPMS1		Method	: SW602	0A						
MBLK	Sample ID: MBLK-55983-55983				U	nits: mg/l	K g	Analys	sis Date: 2/	2/22/2014 08:34 PM	
Client ID:	Run ID	: ICPMS1	_140222A		Sec	qNo: 265 0	1470	Prep Date: 2/2	1/2014	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND	0.25									
Barium	0.01676	0.25								230	J
Cadmium	ND	0.10									
Chromium	ND	0.25	LUTAN								
Lead	ND	0,25									
Selenium	ND	0.25									
Silver	ND	0.25									
LCS	Sample ID: LCS-55983-55983				Units:mg/Kg		Analy	sis Date: 2	/22/2014 (
Client ID:	•	: ICPMS1	_140222A		SeqNo:2650471		Prep Date: 2/21/2014		DF:1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
rilatyte											
Arsenic	4.497	0.25	5		0	89.9	80-120		0		
Barium	4.708	0.25	5		0	94.2	80-120		0		
Cadmium	4.684	0.10	5		0	93.7	80-120	****	0		
Chromium	4.554	0.25	5		0	91.1	80-120		0		
Lead	4.736	0.25	5		0	94.7	80-120		0		
Selenium	4.308	0.25	5		0	86.2	80-120		0		
Silver	4.566	0.25	5		0	91.3	80-120		0		
MS	Sample ID: 1402737-06BMS				ι	Jnits:mg/	Kg	Analy	sis Date: 2	/23/2014	10:53 PI
Client ID: SB-20 w	vith MS/MSD Run II	: ICPMS	1_140222A		Se	qNo:265	0875	Prep Date: 2/2	21/2014	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
L	12.44	1.6	6.353	8.5	79	60.8	75-125		0		s
Arsenic Barium	93.74	1.6	6.353	92.		22.5	7 5-125		0		ŞO
Cadmium	5.997	0.64	6.353	0.09		92.9	75-125		0		
Chromium	21.18	1.6	6.353	13.		115	75-125		0		
	18,58	1.6	6.353		94	104	75-125		0		
Lead Selenium	6.522	1.6	6.353	1.4		80.3	75-125		0		
Silver	5.511	1.6	6.353	0.024		86.4	75-125		0		

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: 55983	Instrument	ID ICPMS1 Method: SW6020A									
MSD	Sample ID: 1402	737-06BMSD	Units: mg/Kg				Analysi	s Date: 2/2	23/2014 10	0:59 PM	
Client ID: SB-20 with MS/MSD		Run ID	: ICPMS1	_140222A	Se	eqNo: 265 (876	Prep Date: 2/21.	/2014	DF: 5	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic		12.25	1.6	6.337	8.579	57.9	75-125	12.44	1.54	25	s
Barium		81.24	1.6	6.337	92.31	-175	75-125	93.74	14.3	25	SO
Cadmium		5.824	0.63	6.337	0.0968	90.4	75-125	5.997	2.94	25	
Chromium		21.15	1.6	6.337	13.88	115	75-125	21,18	0.119	25	
Lead		18	1.6	6.337	11.94	95.6	75-125	18.58	3.17	25	
Selenium		6.375	1.6	6.337	1.419	78.2	75-125	6.522	2.27	25	
Silver		5.326	1.6	6.337	0.02433	83.7	75-125	5.511	3.42	25	

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55965	Instrument ID SVMS7	ent ID SVMS7 Method: SW8270M											
MBLK	Sample ID: SBLKS1-55965-55965				Units:µg	/Kg	Analy	/sis Date: 2	/24/2014 ()7:21 PM			
Client ID:	Run ID	SVMS7	_140224A		SeqNo:26	55538	Prep Date: 2/2	21/2014	DF: 1				
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref V alue	%RPD	RPD Limit	Qual			
Analyte	Result	- FUL	OF IC VE		70112								
Acenaphthene	ND	3.3											
Acenaphthylene	ND	3.3											
Anthracene	ND	3.3											
Benzo(a)anthracene	ND	3.3	<u></u>										
Benzo(a)pyrene	ND	3.3											
Benzo(b)fluoranthene	ND	3.3											
Benzo(b-k)fluoranther	ne ND	6.7											
Benzo(e)pyrene	ND	10											
Benzo(g.h.i)perylene	ND	3.3											
Benzo(k)fluoranthene	ND	3.3											
Chrysene	ND	3.3											
Dibenzo(a,h)anthrace	ne ND	3.3											
Fluoranthene	ND	3.3											
Fluorene	ND	3.3											
Indeno(1,2,3-cd)pyrer	ne ND	3.3											
Naphthalene	ND	3.3		*******									
Phenanthrene	ND	3.3											
Pyrene	ND	3.3											
Surr: 2-Fluorobiphe	enyl 155.3	0	166.7		0 93.2	12-10)	0					
Surr: 4-Terphenyl-	114 174.7	0	166.7		0 108	25-13	7	0					
Surr: Nitrobenzene		0	166.7		0 81.4	37-10	7	0					

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55965	Instrument ID SVMS7		Method	: SW827	ОМ			AA/ E			
LCS	Sample ID: SLCS\$1-55965-55965				U	Inits: μg/K	g	Analys	is Date: 2/	24/2014 0	1:41 PM
Client ID:	Run ID:	SVMS7	140224A		SeqNo:2655533			Prep Date: 2/21	/2014	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	58.67	3.3	66.67		0	88	35-110	0			
Acenaphthylene	60.33	3.3	66.67		0	90.5	35-115	0			
Anthracene	63.67	3.3	66.67		0	95.5	45-125	0			
Benzo(a)anthracene	60	3.3	66.67		0	90	50-105	0	4000		
Benzo(a)pyrene	69.67	3.3	66.67		0	105	40-135	0			
Benzo(b)fluoranthene	63.67	3.3	66.67		0	95.5	55-120	0			
Benzo(b-k)fluoranthen	e 92.33	6.7	133.3	<u>.</u>	0	69.3	55-120	0			
Benzo(g,h,i)perylene	66.33	3.3	66.67		0	99.5	55-115	0			
Benzo(k)fluoranthene	62	3.3	66.67		0	93	55-120	0			
Chrysene	59.67	3.3	66.67		0	89.5	55-120	0			
Dibenzo(a,h)anthracer	ne 68	3.3	66.67		0	102	45-115	0			
Fluoranthene	65	3.3	66.67		0	97.5	40-135	0	·		
Fluorene	58	3.3	66.67		0	87	45-105	C	1		
Indeno(1,2,3-cd)pyren	e 67.33	3.3	66.67		0	101	55-135	C	}		
Naphthalene	57.33	3.3	66.67		0	86	50-110	C)		
Phenanthrene	58.67	3.3	66.67		0	88	55-125				-/
Pyrene	55.67	3.3	66.67		0	83.5	50-115)		
Surr: 2-Fluorobiphe	nvl 119.7	0	166.7		0	71.8	12-100	()		
Surr: 4-Terphenyl-d	4047	0	166.7		0	98.8	25-137	' ()		
Surr: Nitrobenzene-	440.0	0	166.7		0	68	37-107	·()		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55965	Instrument ID SVMS7		Method	SW8270M						
	mpie ID: 1402737-10B MS			U	Inits:µg/K	9	Anal	ysis Date: 2	/24/2014 0	5:39 PM
	•	SVMS7	140224A	Se	qNo:2655	536	Prep Date: 2/	21/2014	DF: 10	
Client ID: SS-18	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte						05 110		0		
Acenaphthene	116.9	65	129.8	0	90	35-110		0		
Acenaphthylene	97.38	65	129.8	0_	75	35-115		0	.,	
Anthracene	97.38	65	129.8	0	75	45-125		-		
Benzo(a)anthracene	129.8	65	129.8	3.286	97.5	50-105		0		
Benzo(a)pyrene	116.9	65	129.8	0	90	40-135		0		
Benzo(b)fluoranthene	103.9	65	129.8	0	80	55-120		0		
Benzo(b-k)fluoranthene	227.2	130	259.7	0	87.5	55-120		0		
Benzo(g,h,i)perylene	136.3	65	129.8	0	105	55-115		0		
Benzo(k)fluoranthene	123.3	65	129.8	. 0	9 5	55-120		0		
Chrysene	123.3	6 5	129.8	3.286	92.5	55-120		_0		
Dibenzo(a,h)anthracene	129.8	65	129.8	0	100	45-115		0		
Fluoranthene	110.4	65	129.8	0	85	40-135		0		
Fluorene	110.4	65	129.8	0	85	45-105	i	0		
Indeno(1,2,3-cd)pyrene	136.3	65	129.8	0	105	55-135		0		
Naphthalene	84.39	65	129.8	0	65	50-110)	0		
Phenanthrene	103.9	65	129.8	0	80	55-125	<u> </u>	0		
	136.3	65	129.8	0	105	50-115	5	0		
Pyrene Surr: 2-Fluorobiphen	246.7	0	324.6	0	76	12-100)	0		
Surr: 4-Terphenyl-d1	224.4	0	324.6	0	102	25-137	7	0		
Surr: 4-Terphenyi-o i Surr: Nitrobenzene-o	400.0	0	324.6	0	58	37-10	7	0		· · · · · · · · · · · · · · · · · · ·

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 5596 5	Instrument ID SVMS7		Method	i: SW8270M	ATT 1					
MSD S	Sample ID: 1402737-10B MSD				Jnits: µg/K	(g	Analysi	s Date: 2/2	24/2014 06	3:13 PN
Client ID: SS-18	,	· SVMS7	140224A	Se	qNo: 265	5537	Prep Date: 2/21	/2014	DF: 10	
Client ID. 33-16		·	_	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Result	PQL	SPK Val		70INL.C					
Acenaphthene	114.7	64	127.5	0	90	35-110	116.9	1.84	40	
Acenaphthylene	108.3	64	127.5	0	85	35-115	97.38	10.7	40	
Anthracene	95.6	64	127.5	0	7 5	45-125	97.38	1.84	4 0	
Benzo(a)anthracene	108.3	64	127.5	3,286	82.4	50-105	129.8	18	40	
Вепхо(а)ругеле	108.3	64	127.5	0	85	40-135	116.9	7.5 5	40	
Benzo(b)fluoranthene	89.23	64	127.5	0	70	55-120	103.9	15.2	40	
Benzo(b-k)fluoranthen	e 204	130	254.9	0	08	5 5- 12 0	227.2		40	
Benzo(g,h,i)perylene	114.7	64	127.5	0	90	55-115			40	
Benzo(k)fluoranthene	114.7	64	127.5	0	90	55-120			40	
Chrysene	108.3	64	127.5	3.286	82.4	55-120			40	
Dibenzo(a,h)anthracer	ne 114.7	64	127.5	0	90	45-115	129.8		40	
Fluoranthene	89.23	64	127.5	0	70	40-135				
Fluorene	89.23	64	127.5	0	70	45-105	110.4			
Indeno(1,2,3-cd)pyren	ne 114.7	64	127.5	0	90	55-135				
Naphthalene	82.86	64	127.5	0	65	50-110	84.39			
Phenanthrene	95.6	64	127.5	0	75	55-125				
Pyrene	114.7	64	127.5	0	90	50-115				
Surr: 2-Fluorobiphe	nyl 172.1	0	318.7	0	54	12-100				
Surr: 4-Terphenyl-o		0	318.7	0	86	25-137				
Surr: Nitrobenzene	1010	0	318.7	0	58	37-107	188.3	1.84	40	
The following sample	es were analyzed in this batch:		402737-10E		737-11B 737-14B		402737-12B 402737-15B			

1402737-10B	1402737-11B	1402737-12B	
1402737-13B	1402737-14B	1402737-15B	
1402737-16B	1402737-17B		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56039	Instrument ID SVMS7	rument ID SVMS7 Method: SW8270M											
MBLK S	ample ID: SBLKS1-56039-56	1039			Units:	μg/K	9	Analysis Date: 2/25/2014 06:17 PM					
			7 140225A		SegNo:	2655	513	Prep Date: 2/2	4/2014	DF: 1			
Client ID:	· Ru	II ID. SYNIC	1402207	SPK Ref	·		Control Limit	RPD Ref Value		RPD Limit	Qual		
Analyte	Resul	t PQL	SPK Val	Value	%F	REC_	Limit	value	%RPD		Quai		
Acenaphthene	NE	3.3	3										
Acenaphthylene	NE	3.3	3										
Anthracene	NE	3.3	3										
Benzo(a)anthracene	NE	3.5	3							****			
Benzo(a)pyrene	NE	3.3	3										
Benzo(b)fluoranthene	NE	3.3	3		-	***		···					
Benzo(b-k)fluoranthene	NE	6.	7										
Benzo(e)pyrene	N) 1	0										
Benzo(g,h,i)perylene	NI	3.5	3										
Benzo(k)fluoranthene	NI NI) 3.	3										
Chrysene	N) 3.	3										
Dibenzo(a,h)anthracene	N N	D 3.	3										
Fluoranthene	N	D 3.	3										
Fluorene	N	D 3.	3										
Indeno(1,2,3-cd)pyrene	N	D 3.	3										
Naphthalene	N	D 3.	3										
Phenanthrene	N	D 3.	.3										
Pyrene	N	D 3.	.3										
Surr: 2-Fluorobipher	nyl 143	.3	0 166.7		0	86	12-10		0				
Surr: 4-Terphenyl-d1	and the second s	57	0 166.7			94.2	25-13		0				
Surr: Nitrobenzene-c		38	0 166.7		0	82.8	37-10	7	0				

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56039	Instrument ID SVMS7		Method	l: SW827	OM						
LCS San	nple ID: SLC\$\$1-56039-56039		*****		U	Inits:μg/K	(g	Analy	rsis Date: 2	25/2014 0	3:28 PM
Client ID:	,	SVMS7	140225A		\$e	qNo:2655	506	Prep Date: 2/2	24/2014	DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte									0		
Acenaphthene	66.67	3.3	66.67		0	100	35-110		0		
Acenaphthylene	64.33	3.3	66.67		0	96.5	35-115		0		
Anthracene	65.67	3.3	66.67		0	98.5	45-125		0		
Benzo(a)anthracene	67.67	3.3	66.67		0	102	50-105		0		
Benzo(a)pyrene	62.33	3.3	66.67		0	93.5	40-135		0		
Benzo(b)fluoranthene	65	3.3	66.67		0	97.5	55-120		0		
Benzo(b-k)fluoranthene	133	6.7	133.3		0	99.8	5 5- 12 0		0		
Benzo(g,h,i)perylene	69.67	3.3	66.67		0	105	55-115		0		
Benzo(k)fluoranthene	68	3.3	66.67		0	102	55-120		0		
Chrysene	69.67	3.3	66. 6 7		0	105	55-120		0		
Dibenzo(a,h)anthracene	64	3.3	66.67		0	96	45-115		0		
Fluoranthene	61.33	3.3	66.67		0	92	40-135		0		···
Fluorene	59.67	3.3	66.67		0	89.5	45-105	i	0		
Indeno(1,2,3-cd)pyrene	64	3.3	66.67		0	96	55-135	i	0		
Naphthalene	60	3.3	66.67		0	90	50-110)	0		
Phenanthrene	57.67	3.3	66.67		0	86.5	55-125	i	0		4.00
Pyrene	67	3.3	66.67		0	101	50-115	5	0		
Surr: 2-Fluorobiphenyl	150.3	0	166.7		0	90.2	12-100)	0		
Surr: 4-Terphenyl-d14	174	0	166.7		0	104	25-137	,	0		
Surr: Nitrobenzene-d5	137.3	0	166.7		0	82.4	37-107	7	0		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56039	Instrument	ID SVMS7		Method	: SW8270M					
 MS	Sample ID: 1402	737-05B MS			Į	Jnits:µg/K	(g	Analysis Da	te: 2/25/201	4 04:02 PM
Ciient ID: SS-19 wi	ith MS/MSD	Run ID	: SVMS7	_140225A	Se	qNo: 265 5	508	Prep Date: 2/24/2014	4 DF:	1
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %R	RPD Limit	Qual
Acenaphthene		139.9	6.4	127.8	0	110	35-110	0		
Acenaphthylene		132.9	6.4	127.8	0	104	35-115	0	ATTE	
Anthracene		116.9	6.4	127.8	0	91.5	45-125	0		
Benzo(a)anthracen	e	115	6.4	127.8	0.656	89.5	50-105	0	******	
Benzo(a)pyrene		114.3	6.4	127.8	0	89.5	40-135	0		
Benzo(b)fluoranthe	ne	117.5	6.4	127.8	2.624	89.9	55-120	0		
Benzo(b-k)fluoranth		241.5	13	255.5	2.624	93.5	55-120	0		
Benzo(g,h,i)peryler	ne	134.8	6.4	127.8	0	106	55-115	0		
Benzo(k)fluoranthe	ne	123.9	6.4	127.8	0	97	55-120	0		
Chrysene		118.8	6.4	127.8	0	93	55-120	0		
Dibenzo(a,h)anthra	cene	116.3	6.4	127.8	0	91	45-115	0		
Fluoranthene		114.3	6.4	127.8	2.624	87.4	40-135	0		
Fluorene		110.5	6.4	127.8	0	86.5	45-105	0		
Indeno(1,2,3-cd)py	rene	119.5	6.4	127.8	0	93.5	55-135	0		
Naphthalene		102.2	6.4	127.8	0	80	50-110	0		
Phenanthrene		104.1	6.4	127.8	0	81.5	55-125	0		
Pyrene		122	6.4	127.8	0	95.5	50-115	0		
Surr: 2-Fluorobij	phenyl	355.2	0	319.4	0	111	12-100	0		S
Surr: 4-Terphen	yl-d14	295.1	0	319.4	0	92.4	25-137	0		
Surr: Nitrobenze	ne-d5	233.2	0	319.4	0	73	37-107	0		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56039	Instrument	ID SVMS7		Method	: SW8270M						
MS	Sample ID: 1402	737-06B MS			(Jnits:µg/F		Analysis	Date: 2	25/2014)5:10 PM
Client ID: SB-20 with	MS/MSD	Run ID	: SVMS7	_140225A	Se	qNo:265	5510	Prep Date: 2/24/2	2014	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene		105.1	6.6	132.2	0	79.5	35-110	0			
Acenaphthylene		109.8	6.6	132.2	0	83	35-115	0			
Anthracene		117	6.6	132.2	0	88.5	45-125	0			
Benzo(a)anthracene		111.1	6.6	132.2	0	84	50-105	0			
Benzo(a)pyrene		111.1	6.6	132.2	0	84	40-135	0			
Benzo(b)fluoranthene	9	113.7	6.6	132.2	1,914	84.6	55-120	0			
Benzo(b-k)fluoranthe	пе	233.4	13	264.5	1.914	87.5	55-120	0			
Benzo(g,h,i)perylene		129.6	6.6	132.2	0	98	55-115	0			
Benzo(k)fluoranthene	3	119.7	6.6	132.2	0	90.5	55-120	0			
Chrysene		111.1	6.6	132.2	0	84	55-120	0			
Dibenzo(a,h)anthrace	ene	112.4	6.6	132.2	0	85	45-115	0			
Fluoranthene		107.1	6.6	132.2	0	81	40-135	0			
Fluorene		100.5	6.6	132.2	0	76	45-105	0			
Indeno(1,2,3-cd)pyre	пе	115.1	6.6	132.2	0	87	55-135	0			
Naphthalene		111.8	6.6	132.2	0	84.5	50-110	0			
Phenanthrene		102.5	6.6	132.2	0	77.5	55-125	0			
Pyrene		109.8	6.6	132.2	0	83	50-115	0			
Surr: 2-Fluorobiph	enyl	224.8	0	330.6	0	68	12-100	0			
Surr: 4-Terphenyl-	d14	261.2	0	330.6	0	79	25-137	0		·	
Surr: Nitrobenzene	∍-d5	248.6	0	330.6	0	75.2	37-107	0			

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 56039 Inst	rument ID SVMS7		Method	d: SW8270M						
MSD Sample II	D: 1402737-06B MSD			l	Jnits: µg/k	(g	Analysi	s Date: 2/2	25/2014 0	5:43 PM
Client ID: SB-20 with MS/MSD	Run I	D: SVMS7	_140225A	Se	eqNo:265	5511	Prep Date: 2/24	/2014	DF: 1	
Anaiyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	99.43	6.6	131.7	0	75.5	35-110	105.1	5.58	40	
Acenaphthylene	108.6	6.6	131.7	0	82.5	35-115	109.8	1.03	40	
Anthracene	118.5	6,6	131.7	0	90	45-125	117	1.26	40	
Benzo(a)anthracene	113.9	6.6	131.7	0	86.5	50-105	111.1	2,51	40	
Benzo(a)pyrene	118.5	6.6	131.7	0	90	40-135	111.1	6.47	40	
Benzo(b)fluoranthene	121.2	6,6	131.7	1.914	90.5	55-120	113.7	6.32	40	
Benzo(b-k)fluoranthene	251.5	13	263.4	1,914	94.8	55-120	233.4	7.47	40	
Benzo(g,h,i)perylene	139.6	6.6	131.7	0	106	55-115	129.6	7.42	40	«··
Benzo(k)fluoranthene	130.4	6.6	131.7	0	99	55-120	119.7	8.55	40	
Chrysene	113.3	6.6	131.7	0	86	55-120	111.1	1,93	40	
Dibenzo(a,h)anthracene	121.8	6.6	131.7	0	92.5	45-115	112.4	8.03	40	
Fluoranthene	119.2	6.6	131.7	0	90.5	40-135	107.1	10.7	40	
Fluorene	98.77	6,6	131.7	0	75	45-105	100.5	1.75	40	
Indeno(1,2,3-cd)pyrene	123.1	6.6	131.7	0	93.5	55-135	115.1	6.78	40	
Naphthalene	100.1	6,6	131.7	0	76	50-110	111.8	11	40	
Phenanthrene	105.4	6.6	131.7	0	80	55-125	102.5	2.75	40	
Ругепе	114.6	6.6	131.7	0	87	50-115	109.8	4.28	40	
Surr: 2-Fluorobiphenyl	203.5	0	329.2	0	61.8	12-100	224.8	9.97	40	
Surr: 4-Terphenyl-d14	283.1	0	329.2	0	86	25-137	261.2	8.06	40	
Surr: Nitrobenzene-d5	228,5	0	329.2	D	69. <i>4</i>	37-107	248.6	8.44	40	

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: 56039	Instrument	D SVMS7	Method: SW8270M								
MSD	Sample ID: 14027	37-05B MSD		· 		Jnits:µg/k	(g	Analysi	s Date: 2/2	25/2014 0	4:36 PM
Client ID: SS-19 with	MS/MSD	Run ID:	SVMS7	140225A	Se	qNo:265	5603	Prep Date: 2/24	/2014	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene		129.5	6.5	129.5	0	100	35-110	139.9	7.73	40	
Acenaphthylene		121.7	6.5	129.5	0	94	35-115	132.9	8.76	40	
Anthracene		123	6.5	129.5	0	95	45-125	116.9	5.1	4 0	
Benzo(a)anthracene		122.4	6.5	129.5	0.656	94	50-105	115	6. 2 2	40	
Benzo(a)pyrene		119.8	6.5	129.5	0	92.5	40-135	114.3	4.64	40	
Benzo(b)fluoranthen	e	126.9	6.5	129.5	2.624	96	55-120	117.5	7.66	40	
Benzo(b-k)fluoranthe		255.7	13	259	2.624	97.7	55-120	241.5	5.74	40	
Benzo(g,h,i)perylene		142.4	6.5	129.5	0	110	55-115	134.8	5.52	40	
Benzo(k)fluoranthen		128.8	6.5	129.5	0	99.5	55-120	123.9	3.89	40	
Chrysene		122.4	6.5	129.5	0	94.5	55-120	118.8	2.94	40	
Dibenzo(a,h)anthrac	ene	121.1	6.5	129.5	0	93.5	45-115	116.3	4.05	40	
Fluoranthene		119.8	6.5	129.5	2.624	90.5	40-135	114.3	4.64	40	
Fluorene		112.7	6.5	129.5	0	87	45-105	110.5	1.92	40	
Indeno(1,2,3-cd)pyre	ene	125	6.5	129.5	0	96.5	55-135	119.5	4.5	40	
Naphthalene		112.7	6.5	129.5	0	87	50-110	102.2	9.72	40	
Phenanthrene		110.1	6.5	129.5	0	8 5	55-125	104.1	5.55	40	
Pyrene		126.3	6.5	129.5	0	97.5	50-115	122	3.42	40	
Surr: 2-Fluorobiph	nenvl	294.6	0	323.7	0	91	12-100	355.2	18.6	40	
Surr: 4-Terphenyl		294.6	0	323.7	0	91	25-137	295.1	0.183	40	
Surr: Nitrobenzen		250.6	0	323.7	0	77.4	37-107	233.2	7.19	40	Amu
	-1l	1 2 4 1 1 - 1 - 1 -	1	402737-01E	1402	737-02B	14	102737-03B			

The following samples were analyzed in this batch:

			٠.
1402737-01B	1402 7 37-02B	1402737-03B	
1402737-04B	1402737-05B	1402737-06B	ļ

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55964	Instrument 1D VMS5		Metho	d: SW826	0B					
MBLK Sam	pie ID: MBLK-55964-55964		***	A	Units: µg/k	ſg	Analy	sis Date: 2	/21/2014 (2:51 PI
Client ID:	Run I	D: VM\$5 ^	140221A		SeqNo:265	1525	Prep Date: 2/2	1/2014	DF: 1	
		-		SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Vai	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	ND	30								
1,1,2,2-Tetrachioroethane	ND	30								
1,1,2-Trichloroethane	ND	30								
1,1-Dichloroethane	ND	30								
1.1-Dichloroethene	ND	30								
1,2-Dichloroethane	ND	30								
1,2-Dichloropropane	ND	30								
2-Butanone	ND	200								
2-Hexanone	ND	30					,			
4-Methyl-2-pentanone	ND	30								
Acetone	ND	100								
Benzene	ND	30								
Bromodichloromethane	ND	30								
Bromoform	ND	30								
Bromomethane	ND	75								
Carbon disulfide	ND	30								
Carbon tetrachloride	ND	30								
Chlorobenzene	ND	30								
Chloroethane	ND	100		**						
Chloroform	ND	30								
Chloromethane	ND	100								*******
cis-1,2-Dichloroethene	ND	30								
cis-1,3-Dichloropropene	ND	30								
Dibromochloromethane	ND	30								
Ethylbenzene	ND	30		********						
m,p-Xylene	ND	60								
Methylene chloride	82	30								
o-Xylene	ND	30								
Styrene	ND	30								
	ND	30								
Tetrachloroethene	ND	30					.,			
Toluene	ND ND	30								
trans-1,2-Dichloroethene		30								
trans-1,3-Dichloropropens	ND ND	30								
Trichloroethene	ND ND	30								
Vinyl chloride										
1,2-Dichloroethene, Total		60 60			***					
1,3-Dichloropropene, Total	at ND ND									
Xylenes, Total		90	1000		0 97.6	70-13	n	0		
Surr: 1,2-Dichloroethai			1000		0 98.8			0		
Surr: 4-Bromofluorobei		0	1000		0 96.6			0		
Surr: Dibromofluorome	thane 965.5	0	7000		V 30.0	10-13	•	•		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55964 Instrume	ent ID VMS5		Method	i: SW826	nΒ						
LCS Sample ID: Lo	CS-55964-55964				U	Inits:µg/K	g	Analys	sis Date: 2	/21/2014 0	1:05 PN
Client ID:	Run ID	VMS5_1	140221A		Se	qNo: 2651	516	Prep Date: 2/2	1/2014	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
	1011	30	1000		0	101	70-135	0	1		
1,1,1-Trichloroethane	1058	30	1000		0	106	55-130	0			
1,1,2,2-Tetrachloroethane 1.1,2-Trichloroethane	1061	30	1000		0	106	60-125	C			
1.1-Dichloroethane	1056	30	1000		0	106	75-125	C)		
1,1-Dichloroethene	1061	30	1000		0	106	65-135	C)		
1,2-Dichloroethane	1008	30	1000		0	101	70-135	C)		
1,2-Dichloropropane	1038	30	1000		0	104	70-120	C)		
2-Butanone	947.5	200	1000		0	94.8	30-160	C)		
2-Hexanone	1034	30	1000		0 .		45-145	()		
4-Methyl-2-pentanone	1350	30	1000		0	135	96-168	()		
Acetone	823.5	100	1000		0	82.4	20-160	()		
Benzene	1019	30	1000		0	102	75-125	()		
Bromodichloromethane	1018	30	1000	/4.54	0	102	70-130	()		
Bromoform	853.5	30	1000		0	85.4	55-135	()		
Bromomethane	1051	75	1000	****	0	105	30-160	()		
Carbon disulfide	1148	30	1000		0	115	45-160	(
Carbon tetrachloride	854.5	30	1000		0	85.4	65-135)		
Chlorobenzene	1032	30	1000		0	103	75-125	()		
Chloroethane	882.5	100	1000	-	0	88.2	40-155	()		
Chloroform	983.5	30	1000		0	98.4	70-125	()		
Chloromethane	714.5	100	1000		0	71.4	50-130		5		
cis-1,2-Dichloroethene	1095	30	1000		0	110	65-125	()		
cis-1,3-Dichloropropene	1190	30	1000		0	119	70-125	(0		
Dibromochioromethane	840	30	1000		0	84	65-135	•	D		
Ethylbenzene	1058	30	1000		0	106	75-125		0		
m,p-Xylene	2158	60	2000		0	108	80-125	1	0		
Methylene chloride	1054	30	1000		0	105	55-145		0		В
o-Xylene	1072	30	1000		0	107	75-125	1	0	•	
Styrene	1100	30	1000		0	110	75-125		0		
Tetrachioroethene	1032	30	1000		0	103	64-140		0		
Toluene	1029	30	1000		0	103	70-125		0		
trans-1,2-Dichloroetheпе	1086	30	1000		0	109	65-135		0		
trans-1,3-Dichloropropene	1067	30	1000		0	107	65-125		0		
Trichloroethene	1058	30	1000		0	106	75-125		0		
Vinyl chloride	798.5	30	1000		0	79.8	60-125		0		-
Xylenes, Total	3230	90	3000		0	108	75-125		0		
Surr: 1,2-Dichloroethane-d4	962.5	0			0	96.2	70-130		0		
Surr: 4-Bromofluorobenzene	992.5	0			0	99.2	70-130		0		
Surr: Dibromofluoromethane	976.5	0			0	97.6	70-130		0		
Surr: Toluene-d8	995.5	0			0	99.6	70-130		0		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55964	Instrument ID VMS5		Method	d: SW8260 B					
MS Samı	oie ID: 1402737-05A M S				Units:μg/K	.g	Analysis Date:	2/22/2014	09:42 AN
Client ID: SS-19 with MS/N	ISD Run I	D: VMS5_	140221B	Se	egNo: 265 1	659	Prep Date: 2/21/2014	DF: 1	
				SPK Ref		Control	RPD Ref	RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value %RPD	Limit	Qual
1,1,1-Trichloroethane	1041	30	1000	0	104	70-135	0		
1,1,2,2-Tetrachioroethane	972	30	1000	0	97.2	55-130	0		
1,1,2-Trichioroethane	1032	30	1000	0	103	60-125	0		
1,1-Dichloroethane	1028	30	1000	0	10 3	75-125	0		
1,1-Dichloroethene	1098	30	1000	0	110	65-135	0		
1,2-Dichloroethane	1024	30	1000	0	102	70-135	0		
1,2-Dichloropropane	1016	30	1000	0	102	70-120	0		
2-Butanone	850	200	1000	0	85	30-160	0		
2-Hexanone	862.5	30	1000	0	86.2	45-145	0		
4-Methyl-2-pentanone	1132	30	1000	0	113	89-161	0		
Acetone	836.5	10 0	1000	0	83.6	20-160	0		
Benzene	1022	30	1000	0	102	75-125	0		
Bromodichloromethane	949	30	1000	0	94.9	70-130	0		
Bromoform	711	30	1000	0	71.1	55-135	0		
Bromomethane	1059	7 5	1000	0	106	30-160	0		
Carbon disulfide	1140	30	1000	104.5	104	45-160	0		
Carbon tetrachioride	886.5	30	1000	0	88.6	65-135	0		
Chlorobenzene	1048	30	1000	0	105	75-125	0		
Chloroethane	931	100	1000	0	93.1	40-155	0		
Chloroform	992.5	30	1000	0	99.2	70-125	0		
Chloromethane	716. 5	100	1000	0	71.6	50-130	0		
cis-1,2-Dichloroethene	1054	30	1000	0	105	65-125	0		
cis-1,3-Dichloropropene	1070	30	1000	0	107	70-125	0		
Dibromochloromethane	741.5	30	1000	0	74.2	65-135	0		
Ethylbenzene	1087	30	1000	0	109	75-125	0		
m,p-Xylene	2156	60	2000	0	108	80-125	0		
Methylene chloride	1050	30	1000	0	105	55-14 5	0		В
o-Xylene	1083	30	1000	0	108	75-125	0		
Styrene	1096	30	1000	0	110	75-125	0		
Tetrachloroethene	1078	30	1000	0	108	64-140	0		
Toluene	1032	30	1000	0	103	70-125	0		
trans-1,2-Dichloroethene	1116	30	1000	0	112	65-135	0		
trans-1,3-Dichloropropene	925	30	1000	0	92.5	65-125	0		
Trichloroethene	1072	30	1000	0	107	75-125			
Vinyl chloride	846	30	1000	0		60-125			
Xylenes, Total	3240	90	3000	. 0		75-125			
Surr: 1,2-Dichloroethane		0	1000	0		70-130			
Surr: 4-Bromofluorobenz		0	1000	. 0		70-130			
Surr: Dibromofluorometi		0	1000	0		70-130			
Sum: Toluene-d8	996	0	1000	0	99.6	70-130	0		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Note:

Batch ID: 55964 Instrum	nent ID VMS5		Method	d: SW8260B			·····			
MS Sample ID: 1	402737-06A MS			ı	Units: µg/k	(g	Analysis D	ate: 2/22/	2014	0:34 AM
Client ID: SB-20 with MS/MSD	Run ID:	VMS5_	140221B	Se	eqNo: 265 1	1661	Prep Date: 2/21/201	4	DF:1	
				SPK Ref		Control	RPD Ref	RI	PD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value %I	RPD Li	imit	Qual
1,1,1-Trichioroethane	1084	30	1000	0	108	70-135	0			
1,1,2,2-Tetrachloroethane	1022	30	1000	0	102	55-130	0			
1,1,2-Trichloroethane	1020	30	1000	0	102	60-125	0			
1,1-Dichloroethane	1051	30	1000	0	105	75-125	0			
1,1-Dichloroethene	1138	30	1000	0	114	65-135	0			
1,2-Dichloroethane	1032	30	1000	0	103	70-135	0			
1,2-Dichloropropane	1030	30	1000	0	103	70-120	0			
2-Butanone	939.5	200	1000	0	94	30-160	0			
2-Нехаполе	968	30	1000	0	96.8	45-145	0			
4-Methyl-2-pentanone	1240	30	1000	0	124	89-161	0			
Acetone	1006	100	1000	0	101	20-160	0			
Benzene	1038	30	1000	0	104	75-125	0			
Bromodichloromethane	970	30	1000	0	97	70-130	0			
Bromoform	731	30	1000	0	73.1	55-135	0			
Bromomethane	601.5	75	1000	0	60.2	30-160	0			
Carbon disulfide	1152	30	1000	56.5	110	45-160	0			
Carbon tetrachloride	893	30	1000	0	89.3	65-135	0			
Chlorobenzene	1072	30	1000	0	107	75-125	0			
Chloroethane	833.5	100	1000	0	83.4	40-155	0			
Chloroform	1008	30	1000	0	101	70-125	0			
Chioromethane	742.5	100	1000	0	74.2	50-130	0			
cis-1,2-Dichloroethene	1060	30	1000	0	106	65-125	0			
cis-1,3-Dichloropropene	1084	30	1000	0	108	70-125	0			
Dibromochloromethane	772	30	1000	0	77.2	65-135	0			
Ethylbenzene	1110	30	1000	0	111	75-125	0			
m,p-Xylene	2195	60	2000	0	110	80-125	0			
Methylene chloride	1084	30	1000	0	108	55-145	0			В
o-Xylene	1099	30	1000	0	110	75-125	0			
Styrene	1122	30	1000	0	112	75-125	0			
Tetrachloroethene	1114	30	1000	0	111	64-140	0			
Toluene	1058	30	1000	0	106	70-125	0			
trans-1,2-Dichloroethene	1130	30	1000	0	113	65-135	0			
trans-1,3-Dichloropropene	990.5	30	1000	0	99	65-125	0			
Trichloroethene	1106	30	1000	0	111	75-125	0			
Vinyl chloride	867.5	30	1000	0	86.8	60-125	0			
Xylenes, Total	3294	90	3000	0	110	75-125	0			
Surr: 1,2-Dichloroethane-d4	957	0	1000	0	95.7	70-130	0			
Surr: 4-Bromofluorobenzene	999.5	0	1000	0	100	70-130	0			
Surr: Dibromofluoromethane	961.5	0	1000	0	96.2	70-130	0			
Surr: Toluene-d8	992	0	1000	0	99.2	70-130	.0			

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Batch ID: 55964 Instru	ment ID VMS5		Metho	d: SW82601	3					
MSD Sample ID:	1402737-05A MSD				Units: µg/	'Kg	Analysi	s Date: 2/2	22/2014 1	0:08 AN
Client ID: SS-19 with MS/MSD	Run ID	: VMS5_1	140221B	5	SeqNo:26	51660	Prep Date: 2/21	/2014	DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	1.124	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	1030	30	1000	0	103	70-135	1041	1.01	30	
1,1,2,2-Tetrachioroethane	1002	30	1000	0	100	55-130	972	2.99	30	
1,1,2-Trichloroethane	1030	30	1000	0	103	60-125	1032	0.194	30	
1,1-Dichloroethane	1064	30	1000	0	106	75-125	1028	3.44	30	
1,1-Dichloroethene	1103	30	1000	0	110	65-135	1098	0.454	30	
1,2-Dichloroethane	1008	30	1000	0	101	70-135	1024	1.62	30	
1,2-Dichloropropane	1018	30	1000	0	102	70-120	1016	0.246	30	
2-Butanone	945.5	200	1000	0	94.6	30-160	850	10.6	30	
2-Hexanone	940	30	1000	0	94	45-145	862.5	8.6	30	
4-Methyl-2-pentanone	1225	30	1000	0	122	89-161	1132	7.94	30	
Acetone	964.5	100	1000	0	96.4	20-160	836.5	14.2	30	
Benzene	1006	30	1000	0	101	<i>7</i> 5-125	1022	1,58	30	
Bromodichloromethane	943.5	30	1000	0	94.4	70-130	949	0.581	30	
Bromoform	697	30	1000	0	69.7	5 5-135	711	1.99	30	
Bromomethane	588. 5	75	1000	0	58.8	30-160	1059	57.1	30	R
Carbon disulfide	1084	30	1000	104.5	97.9	45-160	1140	5.08	30	
Carbon tetrachloride	888.5	30	1000	0	88.8	65-135	886.5	0.225	30	
Chlorobenzene	1024	30	1000	0	102	75-125	1048	2.37	30	
Chloroethane	843.5	100	1000	0	84.4	40-155	931	9.86	30	
Chloroform	985	30	1000	0	98,5	70-125	992.5	0.759	30	
Chloromethane	721	100	1000	0	72.1	50-130	716.5	0.626	30	
cis-1,2-Dichloroethene	1046	30	1000	C	105	65-125	1054	0.714	30	
cis-1,3-Dichloropropene	1078	30	1000	C	108	70-125	1070	0.745	30	
Dibromochloromethane	742.5	30	1000	C	74.2	65-135	741.5	0.135	30	
Ethylbenzene	1058	30	1000	C	106	75-125	1087	2.75	30	
m,p-Xylene	2143	60	2000	C	107	80-125	2156	0.628	30	
Methylene chloride	1060	30	1000	C	106	55-14 5	1050	0.947	30	В
o-Xy l ene	1060	30	1000	C	106	75-125	1083	2.19	30	
Styrene	1086	30	1000	C	109	75-125	1096	0.917	30	
Tetrachioroethene	1040	30	1000	C	104	64-140	1078	3,54	30	
Toluene	1014	30	1000	C	101	70-125	1032	1.71	30	
trans-1,2-Dichioroethene	1116	30	1000	C	112	65-135	1116	0.0448	30	
trans-1,3-Dichloropropene	961	30	1000	C	96.1	65-125	925	3.82	30	
Trichioroethene	1083	30	1000	C	108	75-125	1072	0.974	30	
Vinyl chloride	827.5	30	1000	C	82.8	60-125	846	2.21	30	
Xylenes, Total	3202	90	3000	C	107	75-125	3240	1.15	30	
Surr: 1,2-Dichloroethane-d4	974	0	1000	C	97.4	70-130	965	0.928	30	
Surr: 4-Bromofluorobenzene	981	0	1000	C				2,47	30	
Surr: Dibromofluoromethane	970.5	0	1000	C				1.04	30	
Surr: Toluene-d8	990.5	0	1000	C	99			0.554	30	

Client: Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: 55964 Instrument	ID VMS5		Metho	d: SW8260E	3					
MSD Sample ID: 1402	2737-06A MSD				Units: µg/k	√g	Analysi	s Date: 2/	22/2014 1	1:00 AN
Client ID: SB-20 with MS/MSD	Run IC	: VMS5_	140221B	\$	eqNo:265	1662	Prep Date: 2/21	/2014	DF: 1	
A not to	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Resuit	FUL	SEK VAI		76INEC			7013.F.D		Quai
1,1,1-Trichloroethane	1064	30	1000	0	106	70-135	1084	1.86	30	
1,1,2,2-Tetrachloroethane	1008	30	1000	0	101	55-130	1022	1.38	30	
1,1,2-Trichloroethane	1039	30	1000	0		60-125	1020	1.85	30	
1,1-Dichloroethane	1032	30	1000	0		75-125	1051	1.87	30	
1,1-Dichloroethene	1074	30	1000	0	107	65-135	1138	5. 7 9	30	
1,2-Dichloroethane	1020	30	1000	0	102	70-135	1032	1.07	30	
1,2-Dichloropropane	1024	30	1000	0	102	70-120	1030	0.633	30	
2-Butanone	935	200	1000	0		30-160	939.5	0.48	30	
2-Hexanone	950.5	30	1000	0	95	45-145	968	1.82	30	
4-Methyl-2-pentanone	1232	30	1000	0	123	89-161	1240	0.566	30	
Acetone	966.5	100	1000	0	96.6	20-160	1006	4.05	30	
Benzene	1016	30	1000	0	102	75-12 5	1038	2.19	30	
Bromodichloromethane	951	30	1000	0	95.1	70-130	970	1. 9 8	30	
Bromoform	721.5	30	1000	0	72.2	55-135	731	1.31	30	
Bromomethane	586	7 5	1000	0	58.6	30-160	601.5	2.61	30	
Carbon disulfide	1046	30	1000	56.5	99	45-160	1152	9.69	30	
Carbon tetrachloride	886.5	30	1000	0	88.6	65-135	893	0.731	30	
Chlorobenzene	1036	30	1000	0	104	75-125	1072	3.37	30	
Chloroethane	806	100	1000	0	80.6	40-155	833.5	3.35	30	
Chloroform	975.5	30	1000	0	97.6	70-125	1008	3. 2 8	30	
Chloromethane	704	100	1000	0	70.4	50-130	742.5	5.32	30	
cis-1,2-Dichloroethene	1022	30	1000	0	102	65-125	1060	3.65	30	
cis-1,3-Dichloropropene	1078	30	1000	0	108	70-125	1084	0.555	30	
Dibromochioromethane	743.5	30	1000	. 0	74.4	65-135	772	3.76	30	
Ethylbenzene	1076	30	1000	0	108	75-125	1110	3.11	30	
m,p-Xylene	2154	60	2000	0	108	80-125	2195	1.89	30	
Methylene chloride	1052	30	1000	0	105	55-145	1084	3.04	30	В
o-Xylene	1086	30	1000	0	109	75-125	1099	1.19	30	
Styrene	1098	30	1000	0	110	75-125	1122	2.16	30	
Tetrachioroethene	1088	30	1000	0	109	64-140	1114	2.45	30	
Toluene	- 1030	30	1000	0	103	70-125	1058	2.78	30	
trans-1,2-Dichloroethene	1069	30	1000	0	107	65-135	1130	5.55	30	
trans-1,3-Dichloropropene	965.5	30	1000	0	96.6	65-125	990.5	2.56	30	
Trichloroethene	1042	30	1000	0	104	75-125	1106	5.96	30	
Vinyl chloride	838	30	1000	0	83.8	60-125	867.5	3.46	30	
Xylenes, Total	3240	90	3000	0	108	75-125	3294	1.65	30	
Surr: 1,2-Dichloroethane-d4	956.5	0	1000	0	95.6	70-130	957	0.0523	30	
Surr: 4-Bromofluorobenzene	997.5	0	1000	0	99,8	70-130	999.5	0.2	30	
Surr: Dibromofluoromethane	958	0	1000	0	95.8	70-130	961.5	0.365	30	
Surr: Toluene-d8	977.5	0	1000	0	97.8	70-130	992	1.47	30	

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: 55964	Instrument ID VMS5	Method:	SW8260B	
The following sample	es were analyzed in this batch:	1402737-01A	1402737-02A	1402737-03A
	·	1402737-04A	1402737-05A	1402737-06A
		1402737-10A	1402737-11A	1402737-12A
		1402737-13A	1402737-14A	1402737-15A
		1402737-16A	1402737-17A	

Triad Engineering, Inc.

Work Order:

1402737

Batch ID: R136121	Instrument ID VMS5		Metho	d: SW826	0			· · · · · · · · · · · · · · · · · · ·		
MBLK San	nple ID: VBLKW2-140224-R13	36121			Units: µg/	L	Analy	sis Date: 2	/25/2014	12:14 PM
Client ID:	Run f): VMS5_	140224B		SeqNo:265	3452	Prep Date:		DF: 1	
Analyte	Result	PQL	SP K V ai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
·										
1,1,1-Trichloroethane	ND ND	1.0								
1,1,2,2-Tetrachloroethane	ND ND	1.0								
1,1,2-Trichloroethane	ND ND									
1,1-Dichloroethane	ND ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloroethane	ND ND	1.0								
1,2-Dichloropropane	ND									
2-Butanone 2-Hexanone	ND ND	5.0								
	ND									
4-Methyl-2-pentanone	ND ND	5.0								
Acetone Benzene	ND ND									
	ND ND	1.0								
Bromodichloromethane Bromoform	ND	1.0								
Bromomethane	ND ND	1.0								
Carbon disulfide	ND ND	2.5								
Carbon tetrachioride	ND ND	1,0								
	ND ND	1.0								
Chłorobenzene Chłoroethane	ND ND	1.0								
Chioroform	ND	1.0								
Chioromethane	ND ND	1.0								
cis-1,2-Dichloroethene	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0				A			· ·	** *
Dibromochloromethane	ND	1.0								
Ethylbenzene	ND	1.0		AND IN THE STREET OF THE STREET, SAND FRANCE						
m,p-Xylene	ND	2.0								
Methylene chłoride	ND ND	5.0								
o-Xylene	ND	1.0								
Styrene	ND	1.0								
Tetrachioroethene	ND	2.0								
Toluene	ND	1.0								
trans-1,2-Dichloroethene	ND	1.0								
trans-1,3-Dichioropropene		1.0								
Trichloroethene	ND	1.0								
Vinyl chloride	ND	1.0								
1,2-Dichloroethene, Total	ND	2.0								
1,3-Dichloropropene, Tota		2.0								
Xylenes, Total	, ND	3.0								
Surr: 1,2-Dichloroethan		0	20		0 96	70-120		0		
Surr: 4-Bromofluoroben		0	20		0 98.6	75-120		0		
Surr: Dibromofluoromet		0	20		0 98.8	85-115		0	THE PROPERTY AND ADDRESS OF THE PROPERTY OF	
Surr: Toluene-d8	19.6	0	20		0 98	85-120		0		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

Note:

Batch ID: R136121 Instrumen	t ID VMS5		Method	i: SW8 260					-ta		
LCS Sample ID: VLC	SW3-140224-R13	6121			Unit	s:µg/L		Anaiy	sis Date: 2	/2 4/201 4	11:22 PM
Client ID:	Run ID	: VMS5_	140224B	5	SeqN	o: 265 3	3443	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%	REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	21.79	1.0	20	C)	109	65-130	()		
1,1,2,2-Tetrachloroethane	21.48	1.0	20	C)	107	65-130	()		
1,1,2-Trichloroethane	21.44	1.0	20	C)	107	75-125	()		
1,1-Dichloroethane	22.06	1.0	20	C)	110	70-135	()		
1,1-Dichloroethene	22.81	1.0	20	C)	114	70-130	()		
1,2-Dichloroethane	20.96	1.0	20	C)	105	87-179	()		
1,2-Dichloropropane	21.14	2.0	20	C)	106	75-125	()		
2-Butanone	18.88	5.0	20	C)	94.4	30-150	()		
2-Hexanone	19.46	5.0	20	C)	97.3	55-130	()		
4-Methyl-2-pentanone	26	5.0	20	()	130	77-178	()		
Acetone	16.39	20	20	C)	82	40-140	()		J
Benzene	20.9	1.0	20	C)	104	80-120	()		
Bromodichloromethane	21.13	1.0	20	C)	106	75-120	()		
Bromoform	20.11	1.0	20	C)	101	70-130	()		
Bromomethane	23.21	1.0	20	C)	116	30-145	()		
Carbon disulfide	24,29	2.5	20	()	121	35-165	()		
Carbon tetrachloride	20.14	1.0	20)	101	65-140	(
Chlorobenzene	21.7	1.0	20	0)	108	80-120	()		
Chloroethane	18.85	1.0	20	C)	94.2	60-135	()		
Chioroform	20.38	1.0	20	(0	102	65-135	()		
Chloromethane	14.78	1.0	20	C)	73.9	70-125	()		
cis-1,2-Dichloroethene	22.13	1.0	20	(0	111	70-125	()		
cis-1,3-Dichloropropene	23.67	1.0	20	(D	118	70-130	()		
Dibromochloromethane	18.69	1.0	20	(0	93.4	60-135	()		
Ethylbenzene	21.68	1.0	20	(0	108	75-125	()		
m,p-Xylene	44.3	2.0	40	(0	111	75-130	()		
Methylene chloride	21.83	5.0	20	(0	109	55-140	()		
o-Xylene	21.94	1.0	20	(0	110	80-120	()		
Styrene	22.69	1.0	20	(0	113	65-135)		
Tetrachloroethene	21.81	2.0	20	(0	109	45-150	(0		
Toluene	21.12	1.0	20	(0	106	75-120)		
trans-1,2-Dichloroethene	22.57	1.0	20	(0	113	60-140	(C		
trans-1,3-Dichloropropene	21,57	1.0	20	(0	108	55-140	()		
Trichtoroethene	22.07	1.0	20	(0	110	70-125	(0		
Vinyl chloride	17.34	1.0	20	(0	86.7	50-145	(0		
Xylenes, Total	66.24	3.0	60	(0	110	75-130	()		
Surr: 1,2-Dichloroethane-d4	18.86	0	20	(0	94.3	70-120	()		
Surr: 4-Bromofluorobenzene	20.02	0	20	{	0	100	75-120	1	0		
Surr: Dibromofluoromethane	19.92	0	20		0	99.6	85-115		D		
Surr: Toluene-d8	19.55	0	20		0	97.8	85-120	ı	0		

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: R136121	Instrument ID VMS5		Metho	d: SW826	0						
MS Samp	e ID: 1402837-14A MS				·	Jnits: µg/L	•	Analy	sis Date: 2	/25/2014	09:22 AM
Client ID:	Run ID	VMS5_	14 0224 B		\$e	qNo: 265 3	3450	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	23.01	1.0	20		0	115	65-130	()		
1,1,2,2-Tetrachloroethane	19.45	1.0	20		0	97.2	65-130	()		
1,1,2-Trichloroethane	19.79	1.0	20		0	99	75-125	()		
1,1-Dichloroethane	21.9	1.0	20		0	110	70-135	()		
1,1-Dichloroethene	24.79	1.0	20		0	124	70-130)		
1,2-Dichloroethane	20.23	1.0	20		0	101	70-130)		
1,2-Dichloropropane	20.89	2.0	20		0	104	75-125	()		
2-Butanone	16.54	5.0	20	····	0	82.7	30-150	()		
2-Hexanone	17.87	5.0	20		0	89.4	55-130	()		
4-Methyl-2-pentanone	23.37	5.0	20		0	117	73-162)		
Acetone	17.75	20	20		0	88.8	40-140	()		J
Benzene	21.17	1.0	20		0	106	80-120	()		
Bromodichloromethane	19.45	1.0	20		0	97.2	75-120	()		
Bromoform	15.13	1.0	20		0	75.6	70-130	()		
Bromomethane	19.92	1.0	20		0	99.6	30-145	()		
Carbon disulfide	25.2	2.5	. 20		0	126	35-165	()		
Carbon tetrachloride	20.21	1.0	20		0	101	65-140	()		
Chlorobenzene	20.86	1.0	20		0	104	80-120)		
Chloroethane	18.58	1.0	20		0	92.9	60-135	()		
Chloroform	20.68	1.0	20		0	103	65-135)		
Chloromethane	15.25	1.0	20		0	76.2	70-125	()		
cis-1,2-Dichloroethene	21.39	1.0	20		0	107	70-125)		
cis-1,3-Dichloropropene	21.99	1.0	20		0	110	70-130	t)		
Dibromochloromethane	15.29	1.0	20		0	76.4	60-135	t)		
Ethylbenzene	21.76	1.0	20		0	109	75-125	t)		
m,p-Xylene	43.76	2.0	40		0	109	75-130	()		
Methylene chloride	21.09	5.0	20		0	105	55-140	()		
o-Xylene	21.45	1.0	20		0	107	80-120	()		
Styrene	21.63	1.0	20		0	108	65-135	()		
Tetrachloroethene	22.96	2.0	20		0	115	45-150	()		
Toluene	20.92	1.0	20		0	105	75-120	()		
trans-1,2-Dichloroethene	22.7	1.0	20		0	114	60-140)		
trans-1,3-Dichloropropene	18.97	1.0	20		0	94.8	55-140)		
Trichloroethene	22.95	1.0	20		0	115	70-125	()		
Vinyl chloride	19.13	1.0	20		0	95.6	50-145	()		
Xylenes, Total	65.21	3.0	60		0	109	75-130)		
Surr: 1,2-Dichloroethane-	14 18.77	0	20		0	93.8	70-120	()		
Surr: 4-Bromofluorobenze	ne 19.82	0	20		0	99.1	75-120)		
Surr: Dibromofluorometha	ne 19.01	0	20		0	95	85-115	()		
Surr: Toluene-d8	19.17	0	20		0	95.8	85-120	()		

Client:

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: R136121 Inst	rument ID VMS5		Method	: SW8260						
MSD Sample II	D: 1402837-14A MSD				Units:µg/L		Analysi	s Date: 2/2	25/2014 0	9:48 AM
Client ID:	Run ID	: VMS5_*	14 02 24B	s	eqNo: 265 :	3451	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	22.87	1.0	20	0	114	65-130	23.01	0.61	30	
1,1,2,2-Tetrachioroethane	19.58	1.0	20	0	97.9	65-130	19.45	0.666	30	
1,1,2-Trichloroethane	20.28	1.0	20	0	101	75-125	19.79	2.45	30	
1,1-Dichloroethane	21.89	1.0	20	0	109	70-135	21.9	0.0457	30	
1,1-Dichloroethene	23.94	1.0	20	0	120	70-130	24.79	3.49	30	
1,2-Dichloroethane	20.71	1.0	20	0	104	70-130	20,23	2.34	30	
1,2-Dichloropropane	21.03	2.0	20	0	105	75-125	20.89	0.668	30	
2-Butanone	18.84	5.0	20	0	94.2	30-150	16.54	13	30	
2-Hexanone	18.9	5.0	20	0	94.5	55-130	17.87	5.6	30	
4-Methyl-2-pentanone	25.11	5.0	20	0	126	73-162	23.37	7.18	30	
Acetone	18.84	20	20	0	94.2	40-140	17.75	0	30	J
Benzene	21.56	1.0	20	0	108	80-120	21.17	1.83	30	
Bromodichloromethane	20.28	1.0	20	0	101	75-120	19.45	4.18	30	
Bromoform	16,43	1.0	20	0	82.2	70-130	15.13	8,24	30	
Bromomethane	21.7	1.0	20	0	108	30-145	19.92	8.55	30	
Carbon disulfide	24.55	2.5	20	0	123	35-165	2 5.2	2.61	30	
Carbon tetrachloride	20.57	1.0	20	0	103	65-140	20.21	1.77	30	
Chlorobenzene	21.21	1.0	20	0	106	80-120	20.86	1.66	30	
Chloroethane	18.38	1.0	20	0	91.9	60-135	18.58	1.08	30	
Chloroform	20.52	1.0	20	0	103	65-135	20.68	0.777	30	
Chloromethane	15.15	1.0	20	0	75.8	70-125	15.25	0.658	30	
cis-1,2-Dichloroethene	21.48	1.0	20	0	107	70-125	21.39	0.42	30	
cis-1,3-Dichloropropene	22,26	1.0	20	0	111	70-130	21.99	1.22	30	
Dibromochloromethane	15.75	1.0	20	0	78.8	60-135	15.29	2.96	30	
Ethylbenzene	22.66	1.0	20	0	113	75-125	21.76	4.05	30	
m,p-Xylene	45.12	2.0	40	0	113	75-130	43.76	3.06	30	
Methylene chloride	21.29	5.0	20	0	106	55-140	21.09	0,944	30	
o-Xylene	22.3	1.0	20	0	112	80-120	21.45	3.89	30	
Styrene	22,39	1.0	20	0	112	65-135	21.63	3.45	30	
Tetrachloroethene	23.58	2.0	20	0	118	45-150	22.96	2.66	30	
Toluene	21.48	1.0	20	0	107	75-120	20.92	2.64	30	
trans-1,2-Dichloroethene	23.2	1.0	20	0	116	60-140	22.7	2.18	30	
trans-1,3-Dichloropropene	19.64	1.0	20	0	98.2	55-140	18.97	3.47	30	
Trichloroethene	23 .3	1.0	20	0	116	70-125	22.95	1 <i>.</i> 51	30	
Vinyl chloride	18.84	1.0	20	0	94.2	50-145	19.13	1.53	3 0	
Xylenes, Total	67.42	3.0	60	0	112	75-130	65.21	3.33	30	
Surr: 1,2-Dichloroethane-d4	18.96	0	20	0	94.8	70-120	18.77	1.01	30	
Surr: 4-Bromofluorobenzene	20.32	0	20	0	102	75-120	19.82	2.49	30	
Surr: Dibromofluoromethane	19.74	0	20	0	98.7	85-115	19.01	3.77	30	
Surr: Toluene-d8	19.57	0	20	0	97.8	85-120	19.17	2.07	30	

The following samples were analyzed in this batch:

1402737-26A

Triad Engineering, Inc.

Work Order:

1402737

Project:

John's Manville - Riverside Parcels

Batch ID: R135957	Instrument ID MC	IST	44.000/4	Method	i: A2540	G						
MBLK	Sample ID: WBLKS-R1	135957			J	Ur	nits:% o	f sample	Analys	is Date: 2/2	20/2014 1	0:11 AN
Client ID:		Run II	: MOIST	140220A		Seq	No: 264	9020	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		ND	0.050									
LCS	Sample ID: LCS-R1359	957				Ur	nits:% o	f sample	Analys	is Date: 2/	20/2014 1	0:11 AN
Client ID:		Run II	D: MOIST	140220A		Seq	No:264	9019	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		100	0.050	100		0	100	99.5-100.5	5 0			
DUP	Sample ID: 1402737-00	6B DUP				Ur	nits:% o	of sample	Analys	sis Date: 2/	20/2014 1	0:11 AN
Client ID: SB-20 wit	h MS/MSD	Run II	D: MOIST	_140220A		Seq	No: 264	9007	Prep Date:		DF: 1	
Anaiyte	•	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		20.79	0.050	0		0	0	0-0	20.71	0.386	20	
DUP	Sample ID: 1402737-0	9A DUP				Ur	nits:% c	of sample	Analys	sis Date: 2/	20/2014 1	0:11 AN
Client ID: BG-2 with	MS/MSD	Run II	D: MOIST	_140220A		Seq	No: 264	9009	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture		16	0.050	0		0	0	0-0	16.07	0.437	2 0	
The following samp	oles were analyzed in th	is batch:	14 14 14	102737-01B 102737-05B 102737-10B 1027 3 7-13B 102737-18A	14 14	10273 10273 10273	7-02B 7-06B 7-11B 7-14B 7-23A	140 140 140	02737-04B 02737-09A 02737-12B 02737-15B 02737-24A			

Triad Engineering, Inc.

1402737

Project:

Work Order:

John's Manville - Riverside Parcels

Batch ID: R135958	Instrument ID MOIST		Method	l: A2540	G					
MBLK	Sample ID: WBLKS-R135958			· · · · · ·	Units:% o	f sample	Analy	sis Date: 2/	20/2014 0	4:57 PM
Client ID:	Run ID	: MOIST_	140220B		SeqNo:264	9044	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.050								
LCS	Sample ID: LCS-R135958				Units:% o	f sample	Analy	sis Date: 2/	20/2014 0	4:57 PM
Client ID:	Run ID	: MOIST	140220B		SeqNo:264	9043	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.050	100		0 100	99.5-100.	5 ()		
DUP	Sample ID: 1402737-03B DUP				Units:% o	f sample	Analy	sis Date: 2/	20/2014 0	4:57 PM
Client ID: SB-17	Run ID	: MOIST	140220B		SeqNo:264	9022	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	23.42	0.050	0		0 0	0-0	22.6	3.3	2 0	
DUP	Sample ID: 1402863-01A DUP				Units:% o	f sample	Analy	sis Date: 2/	20/2014 0	4:57 PM
Client ID:	Run ID	: MOIST	_140220B		SeqNo:264	9042	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	11.82	0.050	0	1.111,	0 0	0-0	11.2	2 5.21	20	
The following same	oles were analyzed in this batch:	14 14	102737-03B 102737-16B 102737-20A 102737-25A	14	02737-07A 02737-17B 02737-21A	14	02737-08A 02737-19A 02737-22A			

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262

Chain of Custody Form

Page 1 of 3

☐ ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185

				ALS Project Manager:	: Manager:				ALS W	ALS Work Order #:	er #	レビリナー	273	2	Г
Customer Information		Project	Project Information	lion			Pa	amete	r/Meth	od Red	Parameter/Method Request for Analysis	r Anal	SIS		
Purchase Order 04-13-0402	Project Name John's Manville-Rverside Parcels	a John's Ma	nville-Rve	rside Parce	sis	A VO	VOC by 8260	9							
Work Order	Project Number 04-13-0402	r 04-13-040	2				PAH 8270 SIM	M							
Company Name Triad Engineering, Inc.	Bill To Company Triad Engineering, Inc.	y Triad Eng	ineering, l	nc.		C RC	RCRA 8 Metals	tals							
Send Report To Matthew Wright	Invoice Attn. Jamie Stemple	. Jamie Ste	mple			D. Ar	Arsenic								
4980 Teays Valley Rd. Address	Address	21	9 Hartman Run Rd.			w i									
City/State/Zip Scott Depot, WV 25560	City/State/Zip Morgantown, WV 26505	Morganto	wn, WV 26	505		ø									
Phone 304-755-0721	houd	Phone 304-296-2562	562			#									
Fax 304-755-1880	T	Fax 304-296-8739	739												
e-Mail Address mwright@triadeng.com		jstemple(istemple@triadeng.com	moo											
No Sample Description	Date	Time	Matrix	Pres. Key Numbers	* Bottles	¥	œ	O O	iu	1	ø	· · · · · · · · · · · · · · · · · · ·		: T	Hold
t SS-17	2/14/2014	1015	soil	7,6,8	5	×	×	×							
\$ SS-17 FD	2/14/2014	1015	soil	7,6,8	10	×	×	×		,					· · · · · ·
3 SB-17	2/14/2014	1030	soil	7,6,8	5	×	×	×							
4 SB-17 FD	2/14/2014	1030	soil	7,6,8	10	×	×	×							
\$ SS-19 with MS/MSD	2/14/2014	1115	soil	7,6,8	15	×	×	×							
6 SB-20 with MS/MSD	2/14/2014	1200	soil	7,6,8	15	×	×	×							
7 BG-1	2/14/2014	1500	soil	8	I			×							
8 BG-1FD	2/14/2014	1500	soil	8	1			x							
9 BG-2 with MSM/SD	2/14/2014	1510	soil	8	3		•	×						-	
10 1															
Sampleris). Please Phut & Sigh J	Shipme	Shipment Method:	Requ	iired Turnar 10 Wk Days 🗌	Required Tutnaround Time: (Chack Box)	(Check Box)		Z WK Days		24 Hour	Resi	Results Due Date	Date		
Relinquisher bp:		Received by:	11		Date:	Time:	Notes:	0	-	5	الم.ار		O e e		1
Reinquished by:		Received by (Laboratory)	ratory):		Date: // /	Tlme:	ALS Cooler		4	C Packa	OC Package: (Check Box Below)	E BOX	Below		
Joseph Marie 2114	Time:	Checked by (1 abo	In aboratory!	nn-	N/1/1/1	17770	≘│	<u> </u>	dwa	Level II; S	Level II: Standard QC		Level III: Raw Data	Raw Data	
								७₹	ر 3د	Level IV:	☐ Level IV: SW846 Methods/CLP like	ethods/CU	P ike	.	
The state of the s										Other:					
Preservative Key: 1-HCl 2-HNO ₃ 3-	3-H ₂ SO ₄ 4-NaOH		5-Na ₂ S ₂ O ₃	6-NaHSO₄	ک ₄ 7-Other		8-4°C	Note:	Any cha	iges mus	Note: Any changes must be made in writing once samples	e in writ	ing once	samble	S
Copyrigh	Copyright 2007 by ALS Environm	onmental								Have De	HIJIO n e Hi	ווכח ווכח			

ALS Environmental
1740 Union Carbide Drive
So. Charleston, WV 25303
(Tel) 304.356.3168
(Fax) 304.205.6262

Chain of Custody Form

Page 2 of 3

ALS Environmental
3352 128th Avenue
Holland, Michigan 49424
(Tel) 616.399.6070
(Fax) 616.399.6185

											-		6		Γ
				ALS Project Manager:	: Manager:				A.	ALS Work Order #:	ler#:	₹ 04/2			
Customer Information		Projec	Project Information	fion				arame	ter/Me	Parameter/Method Request for Analysis	nest fo	ir Anal	Sis		
Purchase Order 04-13-0402	Project Name	ne John's M	lanville-Rve	John's Manville-Rverside Parcels	sis	A	VOC by 8260	260							
Work Order	Project Number	er 04-13-0402	02			8	PAH 8270 SIM	SIM							
Company Name Triad Engineering, Inc.	Bill To Company		Triad Engineering, Inc.	nc.		υ Ε	RCRA 8 Metals	Aetals							
Send: Report To Matthew Wright	Involce Attn.	in. Jamie Stemple	emple			D A	Arsenic								
Address	Address		219 Hartman Run Rd	j.		ш									. [
						Ľ,									
City/State/Zip Scott Depot, WV 25560	City/State/Zip		Morgantown, WV 26505	505		9									
Phone 304-755-0721	Phone	ne 304-296-2562	2562			4									
Fax 304-755-1880	¥.	Fax 304-296-8739	8739												
e:Wall Address mwright@triadeng.com		istemple	istemple@triadeng.com	com											
No. Sample Description	Date	Time	Matrix	Pres. Key Numbers	# Boittles	¥	m	Ö	c	ш	Ø	主		J. Hold	ě
4 SS-18	2/14/2014	1045	soil	7,6,8	5	×	×	×							
2 SS-20	2/14/2014	1145	soil	7,6,8	'n	×	×	×							
3 SS-21	2/14/2014	1130	lios	7,6,8	5	×	×	×							
4 SS-22	2/14/2014	1400	soil	7,6,8	5	×	×	×							
\$ SB-18	2/14/2014	1100	lios	7,6,8	5	×	×	×							
6 SB-19	2/14/2014	1130	lios	7,6,8	5	×	×	×							
7 SB-21	2/14/2014	1345	soil	7,6,8	5	x	х	×							
8 SB-22	2/14/2014	1415	soil	7,6,8	5	X	x	×							
9 BG-3 A	2/14/2014	1520	soil	7,6,8	5				ж						
10 BG-4 /	2/14/2014	1530	es	7,6,8	5				×						
Sampler(s): Please Pont & Sign	Shipm	Shipment Method:		ired Turnar	Required Turnaround Time: (Check Box)	[Check]	Box)		launo		Resi	Results Due Date	Date:		
Matthew Wright (14)				10 WK-Days (J 5 WK Days	1 I 3 WK Days	Dalve	\$ `	Z WK-Days	☐ 24 Hour					
Relinquished by:	ť	Received by:	The state of the s		Date:	Time:	Notes:	,	<i>O</i>	1	5	7 2 July 5	5	6	
	3	1	7		4111110		7	3		A S				20	1
Reliquished by: 2/8/14	7 54.45 (scelved by (Laboratory):	ioratory):	ر ک	Date: 2/(४/८५	7,7/C	ALS Cooler ID	Cooler ID	Coole Temp	OC'Package: ¡Check Box Below) ☑ Level II: Standard QC ☐ Level III: 1	OC'Package: (Check Box Below) 긴 Level II: Standard QC [L] Level III: Raw Data	eck Box	Below) evel III: R	aw Data	
Logged by (Laboratory):	Time:	Checked by Kab	Zaboratory):		-				ر د و	TRRP LRC	КС		TRRP Level IV	>	
		7							43%	Level IV	Level IV: SW846 Methods/CLP like	/ethods/CL	P like		
										Other:		-			
Preservative Key: 1-HCl 2-HNO ₃ 3-H ₂	3-H ₂ SO ₄ 4-NaOH		5-Na ₂ S ₂ O ₃	6-NaHSO4	7-Other		8-4°C	Not	e: Any	Note: Any changes must be made in writing once samples	st be mad	le in writ	ing once	samples	s
Copyright 2	Copyright 2007 by ALS Environmental	ironmental) 	100	and CUC Form have been submitted to ALS	en suom	ittea to A	rs.		

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262

 \Box

Chain of Custody Form

Page 3 of 3

ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185

			ALS Proj	ALS Project Manager:				ALS W	ALS Work Order #:	<u>_</u> #	1402757	757	
Customer Information		Project Information	rmation			Pa	ramete	r/Meth	Parameter/Method Request for Analysis	ist for	Analy	22	
Furchase Order 04-13-0402	Project Nam	Project Name John's Manville-Rverside Parcels	a-Rverside Par	rcels	A.A	Arsenic							
Work Order	Project Numb	er 04-13-0402			n	5	8260						
Company Name Triad Engineering, Inc.		y Triad Engineer	ing, Inc.		O		!	***************************************					-
Send Report To Matthew Wright	hvoice Att	: Involce Attn. Jamie Stemple			G								
Address 4980 Teays Valley Rd.	Addres	219 Hartman Run Rd	un Rd.		ш								
21. (20, 12. 2)			100		44.								
	Cul	ip Morgantown, WV 26505	V Z6505		ပ								
Phone 304-755-0721	Phor	Phone 304-296-2562											
Fax 304-755-1880	2	Fax 304-296-8739			-								
e-Mail Address mwright@triadeng.com		jstemple@triadeng.com	leng.com		,								
No Sample Description	Date	Tíme Matrix	K Pres Key	y #Ebities	A	Œ	Ď.	Ē	in.	Ø			Hold
BG-5	2/14/2014	1540 soil		1	×					_			
2 BG-6	2/14/2014	1550 soil	8		×								
8 BG-7	2/14/2014	1600 soil	8 1	1	×							<u> </u>	
4 BG-8	2/14/2014	1610 soil	∞	1	×								
\$ BG-9	2/14/2014	1620 soil	8	1	×				-				
6 BG-10	2/14/2014	1630 soil	8	П	×								_
7 TRIP Blance				4	ķ	X							
199					*								
6					*								
10					*								
Sampler(s): Please Print & Signt Matthey Wright	Shipm	Shipment Method:	Required Turnaround Time	Required Turnaround Time: (Check Box)	Check Box		Other	32.00	74 Hour	Result	Results Due Date	9	
Relinquished by: Date:	Time:	Received by:		Date:	Time:	Notes:	-						
a Linke	17/14 1510	Boxton	٠.	2/12/14		د ھے	, d	100	7	7	2/12/14	1,690	
Relinquished by:	18/14 07:45C	seived by (Laboratory):	La	>	Time: みつケー	ALS Cooler JD		Cogler O	4C Package: (Check Box Below)	(Chec andard QC	K Box B	elow)	Data
Logged by (Laboratory): Date:	ite: Time: Chec	sched by (Laboratory):					ئ] 	TRRP LRC		TRR	TRRP Level IV	
							7	35.	Level IV: SW846 Methods/CLP like	V846 Meth	il d'ID/spoo	ke	
Preservative Key: 1-HC! 2-HNO.	3-H-SO			-		ڕ	Note:	Any chan	ouler:	o made	n varilia	22 0000	mules
7011-1	3-1 1 ₂ 3-0 ₄ opyright 2007 by AL	n 3-1√a₂3203 onmental	73 0- 1/ari 50.4	504 F-Utiler		8-4 C	and CO	C Form	and COC Form have been submitted to ALS.	submitte	d to ALS	2.01105 30	mpics

Sample Receipt Checklist

Client Name: <u>I RIADENGINEER</u>				Date/Time	Kecelv	ea: <u>18-1</u>	-eb-14	07:45	
Work Order: <u>1402737</u>				Received b	y:	<u>JAS</u>	<u> </u>		
Checklist completed by Lant Smith	18	3-Feb-14		Reviewed by:	Res	ecca Kise nature	r		22-Feb-14
Matrices: Soil and Water Carrier name: Client	l	24.0			22.9.				1
Shipping container/cooler in good condition?		Yes	✓	No 🗆	N	ot Present			
Custody seals intact on shipping container/cod	oler?	Yes		No 🗌	N	ot Present	✓		
Custody seals intact on sample bottles?		Yes	V	No 🗌	N	ot Present			
Chain of custody present?		Yes	Y	No 🗆					
Chain of custody signed when relinquished an	d received?	Yes	✓.	No 🗆					
Chain of custody agrees with sample labels?		Yes	✓	No 🗆					
Samples in proper container/bottle?		Yes	✓	No 🗌					
Sample containers intact?		Yes	✓:	No 🗆	•				
Sufficient sample volume for indicated test?		Yes	✓.	No □					
All samples received within holding time?		Yes	V	No 🗆					
Container/Temp Blank temperature in complia	nce?	Yes	<u>V</u>	No 🗆					
Sample(s) received on ice?		Yes		No 🗌		IR IR			
Temperature(s)/Thermometer(s): Cooler(s)/Kit(s):		6C; 4.30	<u></u>		······································				
Date/Time sample(s) sent to storage:									
Water - VOA vials have zero headspace?		Yes	✓	No 🗀	No VO	OA vials sub	mitted		
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A	Y			
pH adjusted? pH adjusted by:		Yes		No 🗆	N/A	V			
Login Notes:									
			_						
Client Contacted:	Date Contacted:			Person	Contac	cted:			
Contacted By:	Regarding:								
Comments:									
The second section of a final section of the accessor control of the final section of the sectio	The second control of the Second community of the Seco			ennementa eta eta eta eta turka en teta terretarrolarroa.			<u>_</u>		
CorrectiveAction:							1		
							į	SRC	Page 1 of 1

12-Dec-2013

Matthew Wright Triad Engineering, Inc. 4980 Teays Valley Road Scott Depot, WV 25560

Re: Johns Manville-Riverside Parcels

Work Order: 13111249

Dear Matthew,

ALS Environmental received 10 samples on 22-Nov-2013 03:46 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 62.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Electronically approved by: Rebecca Kiser

Rebicca Kiser

Rebecca Kiser Project Manager EN NOOMATORY

Certificate No: MN 532786

Report of Laboratory Analysis

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Work Order:

13111249

Work Order Sample Summary

Lab Samp ID Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received Hold
13111249-01 SS-1	Soil		11/19/2013 15:30	11/22/2013 15:46
13111249-02 SS-1 FD	Soil		11/19/2013 15:30	11/22/2013 15:46 🗌
13111249-03 SB-1	Soil		11/19/2013 15:30	11/22/2013 15:46
13111249-04 SB-1 FD	Soil		11/19/2013 15:30	11/22/2013 15:46
13111249-05 SS-3	Soil		11/20/2013 09:30	11/22/2013 15:46
I3111249-06 SB-14	Soil		11/20/2013 10:20	11/22/2013 15:46
13111249-07 TMW-2	Water		11/21/2013 10:15	11/22/2013 15:46
13111249-08 TMW-4	Water		11/21/2013 13:00	11/22/2013 15:46
13111249-09 TMW-4 FD	Water		11/21/2013 13:00	11/22/2013 15:46
13111249-10 Trip Blank	Water		11/21/2013	11/22/2013 15:46

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Work Order:

13111249

Case Narrative

The reporting limits for the following metals analysis are elevated due to dilution for high concentration of non-target analytes: 13111249-01B, 13111249-02B, 13111249-03B, 13111249-04B, 13111249-05B, 13111249-06B

The reporting limits for the following dissolved metals analysis are elevated due to dilution for high concentration of non-target analytes: 13111249-08C, 13111249-09C

Batch 53721, Method ICP_6020_S, Sample 13111249-05B: The MS and/or MSD recovery was below the control limit. The corresponding result in the parent sample may be biased low: As, Cd

Batch 53721, Method ICP_6020_S, Sample 13111249-06B: The MS and/or MSD recovery was below the control limit. The corresponding result in the parent sample may be biased low: Pb

Batch 54069, Method ICP_6020_S, Sample 13111249-06B: The MS and/or MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: Cr, Pb

Batch R131534, Method VOC_8260_W, Sample 13111249-07A: The MS and/or MSD recovery was below the control limit. The corresponding result in the parent sample may be biased low: Multiple

Batch R131534, Method VOC_8260_W, Sample 13111249-07A MSD: The MS and/or MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: Chloroethane

Batch R131552, Method VOC_8260_W, Sample 13111248-06A: The MS and/or MSD recovery was above the upper control limit. The corresponding result in the parent sample may be biased high for this analyte: 4-Methyl-2-Pentanone

Batch R131552, Method VOC_8260_W, Sample 13111248-06A MSD: The RPD between the MS and MSD was outside the control limit. The corresponding result in the parent sample should be considered estimated for this analyte: Bromomethane

Batch 53716, Method VOC_8260_S, Sample 13111249-05A: The MS and/or MSD recovery was below the control limit. The corresponding result in the parent sample may be biased low: Mel

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Work Order:

13111249

Case Narrative

Batch 53716, Method VOC_8260_S, Sample LCS-53716: The LCS recovery was above the upper control limit. The sample results for this analyte may be biased high for this analyte: 1,2-Dibromoethane,

4-Methyl-2-pentanone, trans-1,4-Dichloro-2-butene

Batch 53717, Method VOC_8260_S, Sample LCS-53717: The LCS recovery was above the upper control limit. The sample results for this analyte may be biased high for this analyte: 1,2-Dibromoethane

4-Methyl-2-pentanone

Batch 53684, Method SVO_8270_SSIM, Sample 13111249-05B MS: Spike compounds recovered outside allowable limits due to matrix interference.

Batch 53684, Method SVO_8270_SSIM, Sample 13111249-05B MSD: Spk compds were out due to matrix .(Sample was not homogeneous - the parent and MS were similar, the MSD was not).

Date: 12-Dec-13

ALS Group USA, Corp

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

WorkOrder: 13111249

QUALIFIERS, ACRONYMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R S	RPD above laboratory control limit Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
Α	APHA Standard Mcthods
D	ASTM
Е	EPA
sw	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
μg/Kg-dry	Micrograms per Kilogram Dry Weight
μg/L	Micrograms per Liter
mg/Kg-dry	Milligrams per Kilogram Dry Weight
mg/L	Milligrams per Liter

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-1

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Lab ID: 13111249-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep Date: 11	//25/2013 Analyst: LR
Mercury	0.15		0.022	mg/Kg-dry	1	12/2/2013 02:33 PM
METALS BY ICP-MS			SW6020)A	Prep Date: 12	2/11/2013 Analyst: CES
Arsenic	17		1.9	mg/Kg-dry	5	12/11/2013 08:33 PM
Barium	490		1.9	mg/Kg-dry	5	12/11/2013 08:33 PM
Cadmium	0.78		0.77	mg/Kg-dry	5	12/11/2013 08:33 PM
Chromium	19		1.9	mg/Kg-dry	5	12/11/2013 08:33 PM
Lead	38		1.9	mg/Kg-dry	5	12/11/2013 08:33 PM
Selenium	ND		1.9	mg/Kg-dry	5	12/11/2013 08:33 PM
Silver	ND		1.9	mg/ K g-dry	5	12/11/2013 08:33 PM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	М	Prep Date: 11	1/27/2013 Analyst: HL
Acenaphthene	ND		3.8	µg/Kg-dry	1	11/27/2013 10:18 PM
Acenaphthylene	5.4		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Anthracene	6.1		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(a)anthraceпе	31		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(a)pyrene	29		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(b)fluoranthene	39		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(b-k)fiuoranthene	58		7.7	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(e)pyrene	29		11	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(g,h,i)perylene	20		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Benzo(k)fluoranthene	19		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Chrysene	33		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Dibenzo(a,h)anthracene	6.1		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Fluoranthene	5.4		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Fluorene	ND		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Indeno(1,2,3-cd)pyrene	17		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Naphthalene	ND		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Phenanthrene	23		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Pyrene	47		3.8	μg/Kg-dry	1	11/27/2013 10:18 PM
Surr: 2-Fluorobiphenyl	59.4		12-100	%REC	1	11/27/2013 10:18 PM
Surr: 4-Terphenyl-d14	87.4		25-137	%REC	1	11/27/2013 10:18 PM
Surr: Nitrobenzene-d5	61.0		37-107	%REC	1	11/27/2013 10:18 PM
VOLATILE ORGANIC COMPOUNDS			SW8260)B	Prep Date: 11	1/19/2013 Analyst: AK
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	. 1	11/28/2013 04:47 AM
1,1,2,2-Tetrachloroethane	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
1,1-Dichloroethane	ND		35	µg/Kg-dry	1	11/28/2013 04:47 AM
1,1-Dichtoroethene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM

Note:

in Bo Group Corn, Corp

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

Sample ID: SS-1

Collection Date: 11/19/2013 03:30 PM

Date: 12-Dec-13

Work Order: 13111249

Lab ID: 13111249-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
1,2-Dichloropropane	ND		35	µg/Kg-dry	1	11/28/2013 04:47 AM
2-Butanone	ND		230	μg/Kg-dry	1	11/28/2013 04:47 AM
2-Hexanone	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 04:47 AM
Benzene	ND		35	µg/Kg-dry	1	11/28/2013 04:47 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Bromoform	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Bromomethane	ND		86	μg/Kg-dry	1	11/28/2013 04:47 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 04:47 AM
Chloroform	N D		3 5	μg/Kg-dry	1	11/28/2013 04:47 AM
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 04:47 AM
cis-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
cis-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Dibromochloromethane	ND		3 5	μg/Kg-dry	1	11/28/2013 04:47 AM
Ethylbenzene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
m,p-Xylene	ND		69	μg/Kg-dry	1	11/28/2013 04:47 AM
Methylene chloride	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
o-Xylene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Styrene	ND		35	µg/Kg-dry	1	11/28/2013 04:47 AM
Tetrachloroethene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Toluene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
Vinyl chloride	ND		35	μg/Kg-dry	1	11/28/2013 04:47 AM
1,2-Dichloroethene, Total	ND		69	μg/Kg-dry	1	11/28/2013 04:47 AM
1,3-Dichloropropene, Total	ND		69	μg/Kg-dry	1	11/28/2013 04:47 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	11/28/2013 04:47 AM
Surr: 1,2-Dichloroethane-d4	99.0		70-130	%REC	1	11/28/2013 04:47 AM
Surr: 4-Bromofluorobenzene	97.8		70-130	%REC	1	11/28/2013 04:47 AM
Surr: Dibromofluoromethane	98.2		70-130	%REC	1	11/28/2013 04:47 AM
Surr: Toluene-d8	102		70-130	%REC	1	11/28/2013 04:47 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	13		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Date: 12-Dec-13

Lab ID: 13111249-02

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-1 FD

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units 1	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep Date:	11/25/2013 Analyst: LR
Mercury	0.34		0.022	mg/Kg-dry	1	12/2/2013 02:43 PM
METALS BY ICP-MS			SW6020	A	Prep Date:	12/11/2013 Analyst: CES
Arsenic	14		2.0	mg/Kg-dry	5	12/11/2013 08:38 PM
Barium	730		41	mg/Kg-dry	100	12/12/2013 03:16 PM
Cadmium	0.83		0.81	mg/Kg-dry	5	12/11/2013 08:38 PM
Chromium	26		2.0	mg/Kg-dry	5	12/11/2013 08:38 PM
Lead	42		2.0	mg/Kg-dry	5	12/11/2013 08:38 PM
Selenium	ND		2.0	mg/Kg-dry	5	12/11/2013 08:38 PM
Silver	ND		2.0	mg/Kg-dry	5	12/11/2013 08:38 PM
SEMI-VOLATILE ORGANIC COMPOUNDS	S - SIM		SW8270	М	Prep Date:	11/27/2013 Analyst: HL
Acenaphthene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Acenaphthylene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Anthracene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(a)anthracene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(a)pyrene	42		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(b)fluoranthene	46		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(b-k)fluoranthene	ND		76	μg/K g -dry	10	11/27/2013 10:51 PM
Benzo(e)pyrene	ND		110	µg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(g,h,i)perylene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Benzo(k)fluoranthene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Chrysene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Dibenzo(a,h)anthracene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Fluoranthene	46		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Fluorene	ND		38	μg/Kg-dτy	10	11/27/2013 10:51 PM
Indeno(1,2,3-cd)pyrene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Naphthalene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Phenanthrene	ND		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Pyrene	42		38	μg/Kg-dry	10	11/27/2013 10:51 PM
Surr: 2-Fluorobiphenyl	56.0		12-100	%REC	10	11/27/2013 10:51 PM
Surr: 4-Terphenyl-d14	80.0		25-137	%REC	10	11/27/2013 10:51 PM
Surr: Nitrobenzene-d5	50.0		37-107	%REC	10	11/27/2013 10:51 PM
VOLATILE ORGANIC COMPOUNDS			SW8260	В	Prep Date:	11/19/2013 Analyst: CW
1,1,1-Trichioroethane	ND		35	µg/Kg-dry	1	11/28/2013 06:34 AM
1,1,2,2-Tetrachloroethane	ND		35	µg/Kg-dry	1	11/28/2013 06:34 AM
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
1,1-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM

Note:

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-1 FD

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Lab ID: 13111249-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
1,2-Dichloropropane	ND		3 5	μ g /Kg-dry	1	11/28/2013 06:34 AM
2-Butanone	ND		230	μg/Kg-dry	1	11/28/2013 06:34 AM
2-Hexanone	ND		35	µg/Kg-dry	1	11/28/2013 06:34 AM
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 06:34 AM
Benzene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Bromoform	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Bromomethane	ND		86	μg/Kg-dry	1	11/28/2013 06:34 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Chloroethane	ND		120	μ g/ Kg-dry	1	11/28/2013 06:34 AM
Chloroform	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Chłoromethane	ND		120	μg/Kg-dry	1	11/28/2013 06:34 AM
cis-1,2-Dichloroethene	ND		35	µg/Kg-dry	1	11/28/2013 06:34 AM
cis-1,3-Dichloropropene	ND		35	µg/Kg-dry	1	11/28/2013 06:34 AM
Dibromochloromethane	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Ethylbenzene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
m,p-Xylene	ND		69	μg/Kg-dry	1	11/28/2013 06:34 AM
Methylene chloride	N D		35	μg/Kg-dry	1	11/28/2013 06:34 AM
o-Xylene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Styrene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Tetrachioroethene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Toluene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
Vinyl chloride	ND		35	μg/Kg-dry	1	11/28/2013 06:34 AM
1,2-Dichloroethene, Total	ND		69	μg/Kg-dry	1	11/28/2013 06:34 AM
1,3-Dichloropropene, Total	ND		69	μg/Kg-dry	1	11/28/2013 06:34 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	11/28/2013 06:34 AM
Surr: 1,2-Dichloroethane-d4	97.2		70-130	%REC	1	11/28/2013 06:34 AN
Surr: 4-Bromofluorobenzene	98.7		70-130	%REC	1	11/28/2013 06:34 AN
Surr: Dibromofluoromethane	102		70-130	%REC	1	11/28/2013 06:34 AN
Surr: Toluene-d8	101		70-130	%REC	1	11/28/2013 06:34 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	13		0.050	% of sam	ple 1	11/26/2013 03:00 PM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-1

21D 1

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Lab ID: 13111249-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep Date: 11/	25/2013 Analyst: LR
Mercury	0.041		0.023	mg/Kg-dry	1	12/2/2013 02:46 PM
METALS BY ICP-MS			SW6020)A	Prep Date: 12/	11/2013 Analyst: CES
Arsenic	9.2		2.1	mg/Kg-dry	5	12/11/2013 08:49 PM
Barium	210		2.1	mg/Kg-dry	5	12/11/2013 08:49 PM
Cadmium	ND		0.83	mg/Kg-dry	5	12/11/2013 08:49 PM
Chromium	17		2.1	mg/Kg-dry	5	12/11/2013 08:49 PM
Lead	17		2,1	mg/Kg-dry	5	12/11/2013 08:49 PM
Selenium	ND		2.1	mg/Kg-dry	5	12/11/2013 08:49 PM
Silver	ND		2.1	mg/Kg-dry	5	12/11/2013 08:49 PM
SEMI-VOLATILE ORGANIC COMPOUNI	OS - SIM		SW8270	M	Prep Date: 11/	27/2013 Analyst: HL
Acenaphthene	ND		4.1	µg/Kg-dry	1	11/27/2013 11:24 PM
Acenaphthylene	ND		4.1	µg/Kg-dry	1	11/27/2013 11:24 PM
Anthracene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(a)anthracene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(a)pyrene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(b)fluoranthene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(b-k)fluoranthene	ND		8.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(g,h,i)perylene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Benzo(k)fluoranthene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Chrysene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Dibenzo(a,h)anthracene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Fluoranthene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Fluorene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Indeno(1,2,3-cd)pyrene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Naphthalene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Phenanthrene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Pyrene	ND		4.1	μg/Kg-dry	1	11/27/2013 11:24 PM
Surr: 2-Fluorobiphenyl	61.4		12-100	%REC	1	11/27/2013 11:24 PM
Surr: 4-Terphenyl-d14	97.2		25-137	%REC	1	11/27/2013 11:24 PM
Surr: Nitrobenzene-d5	69.0		37-107	%REC	1	11/27/2013 11:24 PM
VOLATILE ORGANIC COMPOUNDS			SW8260)B	Prep Date: 11/	19/2013 Analyst: CW
1,1,1-Trichloro ethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1,1,2,2-Tetrachloroethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1,1,2-Trichloroethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1,1-Dichloroethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1.1-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM

Note:

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-1

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249 Lab ID: 13111249-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1,2-Dichloropropane	ND		37	µg/Kg-dry	1	11/28/2013 06:58 AM
2-Butanone	ND		250	μg/Kg-dry	1	11/28/2013 06:58 AM
2-Hexanone	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
4-Methyl-2-pentanone	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 06:58 AM
Benzene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Bromodichioromethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Bromoform	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Bromomethane	ND		94	μg/Kg-dry	1	11/28/2013 06:58 AM
Carbon disulfide	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Carbon tetrachioride	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Chlorobenzene	, ND		37	µg/Kg-dry	1	11/28/2013 06:58 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 06:58 AM
Chloroform	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 06:58 AM
cis-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
cis-1,3-Dichloropropene	ND		37	µg/Kg-dry	1	11/28/2013 06:58 AM
Dibromochloromethane	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Ethylbenzene	ND		37	µg/Kg-dry	1	11/28/2013 06:58 AM
m,p-Xylene	ND		75	μg/Kg-dry	1	11/28/2013 06:58 AM
Methylene chloride	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
o-Xylene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Styrene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Tetrachloroethene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Toluene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
trans-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
trans-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Trichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
Vinyl chloride	ND		37	μg/Kg-dry	1	11/28/2013 06:58 AM
1,2-Dichloroethene, Total	ND		75	µg/Kg-dry	1	11/28/2013 06:58 AM
1,3-Dichloropropene, Total	ND		75	μg/Kg-dry	1	11/28/2013 06:58 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 06:58 AM
Surr: 1,2-Dichloroethane-d4	97.8		70-130	%REC	1	11/28/2013 06:58 AM
Surr: 4-Bromofluorobenzene	98.5		70-130	%REC	1	11/28/2013 06:58 AM
Surr: Dibromofluoromethane	100		70-130	%REC	1	11/28/2013 06:58 AN
Surr: Toluene-d8	99.6		70-130	%REC	1	11/28/2013 06:58 AM
IOISTURE			A2540	-		Analyst: MEB
Moisture	20		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-1 FD

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Lab ID: 13111249-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 11/	25/2013 Analyst: LR
Mercury	0.034		0.022	mg/Kg-dry	1	12/2/2013 02:48 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 12/	11/2013 Analyst: CES
Arsenic	8.8		2.3	mg/Kg-dry	5	12/11/2013 08:54 PM
Barium	190		2.3	mg/Kg-dry	5	12/11/2013 08:54 PM
Cadmium	ND		0.93	mg/Kg-dry	5	12/11/2013 08:54 PM
Chromium	17		2.3	mg/Kg-dry	5	12/11/2013 08:54 PM
Lead	16		2,3	mg/Kg-dry	5	12/11/2013 08:54 PM
Selenium	ND		2.3	mg/Kg-dry	5	12/11/2013 08:54 PM
Silver	ND		2.3	mg/Kg-dry	5	12/11/2013 08:54 PM
SEMI-VOLATILE ORGANIC COMPOUN	DS - SIM		SW827	0M	Prep Date: 11/	27/2013 Analyst: HL
Acenaphthene	ND		3.9	µg/Kg-dry	1	11/27/2013 11:57 PM
Acenaphthylene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Anthracene	ND		3.9	μg/Kg-diry	1	11/27/2013 11:57 PM
Benzo(a)anthracene	ND		3.9	µg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(a)pyrene	ND		3.9	µg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(b)fluoranthene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(b-k)fluoranthene	ND		7.8	μg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(e)pyrene	ND		12	µg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(g,h,i)perylene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Benzo(k)fluoranthene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Chrysene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Dibenzo(a,h)anthracene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Fluoranthene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Fluorene	ND		3.9	μ g/ Kg-dry	1	11/27/2013 11:57 PM
Indeno(1,2,3-cd)pyrene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Naphthalene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Phenanthrene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Pyrene	ND		3.9	μg/Kg-dry	1	11/27/2013 11:57 PM
Surr: 2-Fluorobiphenyl	59.8		12-100	%REC	1	11/27/2013 11:57 PM
Surr: 4-Terphenyl-d14	99.4		25-137	%REC	1	11/27/2013 11:57 PM
Surr: Nitrobenzene-d5	64.0		37-107	%REC	1	11/27/2013 11:57 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/	19/2013 Analyst: CW
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM
1,1,2,2-Tetrachloroethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM
1,1-Dichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM
1,1-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM

Note:

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-1 FD

Collection Date: 11/19/2013 03:30 PM

Work Order: 13111249

Lab ID: 13111249-04

Matrix: SOIL

	A-RESPANSE OF AND								
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed			
1,2-Dichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
2-Butanone	ND		240	μg/Kg-dry	1	11/28/2013 07:22 AM			
2-Hexanone	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 07:22 AN			
Benzene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Bromodichioromethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
Bromoform	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Bromomethane	ND		89	μg/Kg-dry	1	11/28/2013 07:22 AN			
Carbon disulfide	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Carbon tetrachloride	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Chlorobenzene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 07:22 AN			
Chloroform	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 07:22 AN			
cis-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
cis-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Dibromochloromethane	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Ethylbenzene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
m,p-Xylene	ND		71	μg/Kg-dry	1	11/28/2013 07:22 AN			
Methylene chloride	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
o-Xylene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AM			
Styrene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Tetrachioroethene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Toluene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
trans-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Trichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
Vinyl chloride	ND		36	μg/Kg-dry	1	11/28/2013 07:22 AN			
1,2-Dichloroethene, Total	ND		71	μg/Kg-dry	1	11/28/2013 07:22 AN			
1,3-Dichloropropene, Total	ND		71	μg/Kg-dry	1	11/28/2013 07:22 AN			
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 07:22 AN			
Surr: 1,2-Dichloroethane-d4	97.6		70-130	%REC	1	11/28/2013 07:22 AM			
Surr: 4-Bromofluorobenzene	97.6		70-130	%REC	1	11/28/2013 07:22 AN			
Surr: Dibromofluoromethane	99.8		70-130	%REC	1	11/28/2013 07:22 AM			
Surr: Toluene-d8	99.6		70-130	%REC	1	11/28/2013 07:22 AM			
MOISTURE			A2540			Analyst: MEB			
Moisture	16		0.050	% of samp	ole 1	11/26/2013 03:00 PM			

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Datc: 11/20/2013 09:30 AM

Work Order: 13111249

Lab ID: 13111249-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747		Prep Date: 11/	-
Mercury	0.039		0.023	mg/Kg-dry	1	12/2/2013 02:50 PM
METALS BY ICP-MS			SW602	0 A	Prep Date: 12/	/11/2013 Analyst: CES
Arsenic	21		1.9	mg/Kg-dry	5	12/11/2013 08:59 PN
Barium	220		1.9	mg/Kg-dry	5	12/11/2013 08:59 PM
Cadmium	ND		0.74	mg/Kg-dry	5	12/11/2013 08:59 PM
Chromium	79		1.9	mg/Kg-dry	5	12/11/2013 08:59 PN
Lead	41		1.9	mg/Kg-dry	5	12/11/2013 08:59 PM
Selenium	ND		1.9	mg/Kg-dry	5	12/11/2013 08:59 PM
Silver	ND		1.9	mg/Kg-dry	5	12/11/2013 08:59 PM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	DMI	Prep Date: 11	/27/2013 Analyst: HL
Acenaphthene	ND.		39	ug/Kg-dry	10	11/27/2013 07:33 PN
Acenaphthylene	90		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Anthracene	ND		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Benzo(a)anthracene	260		39	μg/Kg-dry	10	11/27/2013 07:33 PN
Benzo(a)pyrene	320		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Benzo(b)fluoranthene	410		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Benzo(b-k)fluoranthene	580		78	μg/Kg-dry	10	11/27/2013 07:33 PM
Вепzo(e)pyrene	310		120	μg/Kg-dry	10	11/27/2013 07:33 PM
Benzo(g,h,i)perylene	290		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Benzo(k)fluoranthene	170		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Chrysene	250		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Dibenzo(a,h)anthracene	62		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Fluoranthene	330		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Fluorene	ND		39	μg/Kg-dry	10	11/27/2013 07:33 PN
Indeno(1,2,3-cd)pyrene	220		39	µg/Kg-dry	10	11/27/2013 07:33 PM
Naphthalene	ND		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Phenanthrene	43		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Ругепе	430		39	μg/Kg-dry	10	11/27/2013 07:33 PM
Surr: 2-Fluorobiphenyl	68.0		12-100	%REC	10	11/27/2013 07:33 PM
Surr: 4-Terphenyl-d14	96.0		25-137	%REC	10	11/27/2013 07:33 PM
Surr: Nitrobenzene-d5	58.0		37-107	%REC	10	11/27/2013 07:33 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11	/19/2013 Analyst: AK
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
1,1,2,2-Tetrachloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AM
1.1.2-Trichloroethane	ND.		35	μg/Kg-dry	1	11/30/2013 02:05 AM
1,1-Dichloroethane	ND.		35	μg/Kg-dry	1	11/30/2013 02:05 AM
1,1-Dichloroethene	ND.		35	μg/Kg-dry	1	11/30/2013 02:05 AM

Note:

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-3 Collection Date: 11/20/2013 09:30 AM

Work Order: 13111249

Lab ID: 13111249-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	µg/Kg-dry	1	11/30/2013 02:05 AN
1,2-Dichloropropane	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
2-Butanone	ND		230	μg/Kg-dry	1	11/30/2013 02:05 AN
2-Hexanone	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Acetone	ND		120	μg/Kg-dry	1	11/30/2013 02:05 AN
Benzene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Bromoform	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Bromomethane	ND		88	μg/Kg-dry	1	11/30/2013 02:05 AN
Carbon disulfide	· ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Chlorobenzene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Chloroethane	ND		120	μg/Kg-dry	1	11/30/2013 02:05 AN
Chloroform	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Chloromethane	ND		120	μg/Kg-dry	1	11/30/2013 02:05 AN
cis-1,2-Dichloroethene	ND		3 5	μg/Kg-dry	1	11/30/2013 02:05 AN
cis-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Dibromochloromethane	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Ethylbenzene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
m,p-Xylene	ND		70	μg/Kg-dry	1	11/30/2013 02:05 AN
Methylene chloride	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
o-Xylene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Styrene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Tetrachloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
Toluene	ND		3 5	μg/Kg-dry	1	11/30/2013 02:05 AN
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AN
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:05 AM
Vinyl chloride	ND		35	µg/Kg-dry	1	11/30/2013 02:05 AN
1,2-Dichloroethene, Total	ND		70	μg/Kg-dry	1	11/30/2013 02:05 AN
1,3-Dichloropropene, Total	ND		70	μg/Kg-dry	1	11/30/2013 02:05 AN
Xylenes, Total	ND		110	μg/Kg-dry	1	11/30/2013 02:05 AM
Surr: 1,2-Dichloroethane-d4	123		70-130	%REC	1	11/30/2013 02:05 AN
Surr: 4-Bromofluorobenzene	98.8		70-130	%REC	1	11/30/2013 02:05 AN
Surr: Dibromofluoromethane	108		70-130	%REC	1	11/30/2013 02:05 AN
Surr: Toluene-d8	89.8		70-130	%REC	1	11/30/2013 02:05 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	14		0.050	% of samp	le 1	11/26/2013 03:00 PM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parceis

Sample ID:

SB-14

Lab ID: 13111249-06

Matrix: SOIL

Work Order: 13111249

Collection Date: 11/20/2013 10:20 AM

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 11	/25/2013 Analyst: LR
Mercury	0.029		0.022	mg/Kg-dry	1	12/2/2013 02:58 PM
METALS BY ICP-MS			SW602	0 A	Prep Date: 12	1/11/2013 Analyst: CES
Arsenic	9.3		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
Barium	130		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
Cadmium	ND		0.87	mg/Kg-dry	5	12/11/2013 09:43 PM
Chromium	15		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
Lead	14		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
Selenium	ND		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
Silver	ND		2.2	mg/Kg-dry	5	12/11/2013 09:43 PM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	OM.	Prep Date: 11	/27/2013 Analyst: HL
Acenaphthene	ND.		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Acenaphthylene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Anthracene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(a)anthracene	4.2	J	4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Вепхо(а)ругепе	5.5		4.2	µg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(b)fiuoranthene	6.3		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(b-k)fluoranthene	8.9		8.4	μg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(e)pyrene	ND		13	μg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(g,h,i)perylene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Benzo(k)fluoranthene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Chrysene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Dibenzo(a,h)anthracene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Fluoranthene	5.1		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Fluorene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Indeno(1,2,3-cd)pyrene	4.2	J	4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Naphthalene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Phenanthrene	ND		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Pyrene	5.9		4.2	μg/Kg-dry	1	11/27/2013 07:00 PM
Surr: 2-Fluorobiphenyl	66.2		12-100	%REC	1	11/27/2013 07:00 PM
Surr: 4-Terphenyl-d14	108		25-137	%REC	1	11/27/2013 07:00 PM
Surr: Nitrobenzene-d5	72.0		37-107	%REC	1	11/27/2013 07:00 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11	/19/2013 Analyst: AK
1.1,1-Trichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1,1,2,2-Tetrachloroethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1.1.2-Trichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1.1-Dichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1.1-Dichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-14

Collection Date: 11/20/2013 10:20 AM

Work Order: 13111249

Lab ID: 13111249-06
Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1,2-Dichloropropane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
2-Butanone	ND		260	µg/Kg-dry	1	11/28/2013 05:11 AM
2-Hexanone	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
4-Methyl-2-pentanone	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Acetone	ND		130	μg/Kg-dry	1	11/28/2013 05:11 AM
Benzene	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Bromodichloromethane	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Bromoform	N D		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Bromomethane	ND		96	μg/Kg-dry	1	11/28/2013 05:11 AM
Carbon disulfide	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Carbon tetrachloride	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Chlorobenzene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Chloroethane	ND		130	µg/Kg-dry	1	11/28/2013 05:11 AM
Chloroform	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Chloromethane	ND		130	μg/Kg-dry	1	11/28/2013 05:11 AM
cis-1,2-Dichloroethene	N D		39	μg/Kg-dry	1	11/28/2013 05:11 AM
cis-1,3-Dichtoropropene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Dibromochioromethane	N D		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Ethylbenzene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
m,p-Xylene	ND		77	μg/Kg-dry	1	11/28/2013 05:11 AM
Methylene chloride	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
o-Xylene	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Styrene	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Tetrachioroethene	ND		39	µg/Kg-dry	1	11/28/2013 05:11 AM
Toluene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
trans-1,2-Dichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
trans-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Trichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
Vinyl chloride	ND		39	μg/Kg-dry	1	11/28/2013 05:11 AM
1,2-Dichloroethene, Total	ND		77	μg/Kg-dry	1	11/28/2013 05:11 AM
1,3-Dichloropropene, Total	ND		77	μg/Kg-dry	1	11/28/2013 05:11 AM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 05:11 AM
Surr: 1,2-Dichloroethane-d4	98.2		70-130	%REC	1	11/28/2013 05:11 AM
Surr: 4-Bromofluorobenzene	93.4		70-130	%REC	1	11/28/2013 05:11 AM
Surr: Dibromofluoromethane	98.2		70-130	%REC	1	11/28/2013 05:11 AM
Surr: Toluene-d8	102		70-130	%REC	1	11/28/2013 05:11 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	22		0.050	% of sam	ple 1	11/26/2013 03:00 PM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-2

Collection Date: 11/21/2013 10:15 AM

Work Order: 13111249

Lab ID: 13111249-07

Matrix: WATER

Analyses	Result		port imit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA (DISSOLVED)	ND	_	W747	0 mg/L	Prep Date: 12/3/2013	Analyst: LR 12/4/2013 11:53 AM
Mercury	ND	0.0	J020	myrL	•	12/4/2013 11.33 AW
METALS BY ICP-MS (DISSOLVED)			W602	0 A	Prep Date: 11/26/201	•
Arsenic	ND		0050	mg/L	1	11/30/2013 06:19 AM
Barium	0.14	0.	0050	mg/L	1	11/30/2013 06:19 AM
Cadmium	ND		0020	mg/L	1	11/30/2013 06:19 AM
Chromium	ND	0.	0050	mg/L	1	11/30/2013 06:19 AM
Lead	ND	0.	0050	mg/L	1	11/30/2013 06:19 AM
Selenium	ND	0.	0050	mg/L	1	11/30/2013 06:19 AM
Silver	ND	0.	0050	mg/L	1	11/30/2013 06:19 AM
POLYNUCLEAR AROMATIC HYDROCA	RBONS (PA	HS) - SIM S	W827	0M	Prep Date: 11/27/201	3 Analyst: HL
Acenaphthene	ND	,	0.060	μg/L	1	11/27/2013 06:27 PM
Acenaphthylene	ND	(080.0	μg/L	1	11/27/2013 06:27 PM
Anthracene	ND	C	0.060	μg/L	1	11/27/2013 06:27 PM
Benzo(a)anthracene	ND	(0.040	μg/L	1	11/27/2013 06:27 PM
Benzo(a)pyrene	ND	(080.0	μg/L	1	11/27/2013 06:27 PM
Benzo(b)fluoranthene	ND	(0.090	μg/L	1	11/27/2013 06:27 PM
Benzo(b-k)fluoranthene	ND		0.11	μg/L	1	11/27/2013 06:27 PM
Benzo(g,h,i)perylene	ND	(080.0	μg/L	1	11/27/2013 06:27 PM
Benzo(k)fluoranthene	ND	(0.050	μg/L	1	11/27/2013 06:27 PM
Chrysene	ND	(0.050	μg/L	1	11/27/2013 06:27 PM
Dibenzo(a,h)anthracene	ND	(080.0	μg/L	1	11/27/2013 06:27 PM
Fluoranthene	ND	(0.070	μg/L	1	11/27/2013 06:27 PM
Fluorene	ND	(0.050	μg/L	1	11/27/2013 06:27 PM
Indeno(1,2,3-cd)pyrene	ND	(0.070	μg/L	1	11/27/2013 06:27 PM
Naphthalene	ND	(0.070	μg/L	1	11/27/2013 06:27 PM
Phenanthrene	ND	(080.0	µg/L	1	11/27/2013 06:27 PM
Pyrene	ND	(0.050	μg/L	1	11/27/2013 06:27 PM
Surr: 2-Fluorobiphenyl	48.6	10)-112	%REC	1	11/27/2013 06:27 PM
Surr: 4-Terphenyl-d14	76.2	10)-132	%REC	1	11/27/2013 06:27 PM
Surr: Nitrobenzene-d5	52.6	18	5-110	%REC	1	11/27/2013 06:27 PM
VOLATILE ORGANIC COMPOUNDS			SW826	:n		Analyst: AK
1,1,1-Trichloroethane	ND	•	1.0	μg/L	1	11/30/2013 04:06 AM
1,1,2,2-Tetrachloroethane	ND ND		1.0	μg/L	1	11/30/2013 04:06 AM
1.1.2-Trichloroethane	ND ND		1.0	μg/L μg/L	1	11/30/2013 04:06 AM
1,1,2-1 richioroethane 1,1-Dichloroethane	ND ND		1.0	μg/L	1	11/30/2013 04:06 AM
	ND ND		1.0	ρg/L μg/L	1	11/30/2013 04:06 AM
1,1-Dichloroethene 1,2-Dichloroethane	ND ND		1.0	μg/L μg/L	1	11/30/2013 04:06 AM

Note:

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-2

Collection Date: 11/21/2013 10:15 AM

Work Order: 13111249

Lab ID: 13111249-07

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloropropane	ND		2.0	μg/L	1	11/30/2013 04:06 AM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 04:06 AM
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 04:06 AM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 04:06 AM
Acetone	ND		20	μg/L	1	11/30/2013 04:06 AM
Benzene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Bromoform	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Bromomethane	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Carbon disulfide	ND		2.5	μg/L	1	11/30/2013 04:06 AM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Chlorobenzene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Chloroethane	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Chloroform	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Chloromethane	ND		1.0	μg/L	1	11/30/2013 04:06 AM
cis-1,2-Dichloroethene	ND		1.0	µg/L	1	11/30/2013 04:06 AM
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Dibromochloromethane	ND		1.0	µg/L	1	11/30/2013 04:06 AM
Ethylbenzene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
m,p-Xylene	ND		2.0	μg/L	1	11/30/2013 04:06 AM
Methylene chloride	ND		5.0	μg/L	1	11/30/2013 04:06 AM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Styrene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Tetrachloroethene	ND		2.0	μg/L	1	11/30/2013 04:06 AM
Toluene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 04:06 AM
Vinyl chłoride	ND		1.0	μg/L	1	11/30/2013 04:06 AM
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 04:06 AM
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	11/30/2013 04:06 AM
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 04:06 AM
Surr: 1,2-Dichloroethane-d4	98.2		70-120	%REC	1	11/30/2013 04:06 AM
Surr: 4-Bromofluorobenzene	97.6		75-120	%REC	1	11/30/2013 04:06 AM
Surr: Dibromofluoromethane	108		85-115	%REC	1	11/30/2013 04:06 AM
Surr: Toluene-dθ	102		85-120	%REC	1	11/30/2013 04:06 AM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-4

Collection Date: 11/21/2013 01:00 PM

Work Order: 13111249

Lab ID: 13111249-08

Matrix: WATER

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA (DISSOLVED)		SW74		Prep Date: 12/ 3	-
Mercury	ND	0.00020	mg/L	1	12/4/2013 01:43 PM
METALS BY ICP-MS (DISSOLVED)		SW60	20 A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	ND	0.0050	mg/L	. 1	11/30/2013 07:04 AM
Barium	0.11	0.0050	mg/L	1	11/30/2013 07:04 AM
Cadmium	ND	0.0020	mg/L	1	11/30/2013 07:04 AM
Chromium	ND	0.0050	mg/L	1	11/30/2013 07:04 AM
Lead	ND	0.025	mg/L	5	12/3/2013 10:08 PM
Selenium	ND	0.0050	mg/L	1	11/30/2013 07:04 AM
Silver	ND	0.0050	mg/L	1	11/30/2013 07:04 AM
POLYNUCLEAR AROMATIC HYDROCA	ARBONS (PA	HS) - SIM SW82	70M	Prep Date: 11/2	27/2013 Analyst: HL
Acenaphthene	ND	0.060	μg/L	1	11/27/2013 09:12 PM
Acenaphthylene	ND	0.080	μg/L	1	11/27/2013 09:12 PM
Anthracene	ND	0.060	μg/L	1	11/27/2013 09:12 PM
Benzo(a)anthracene	ND	0.040	μg/L	1	11/27/2013 09:12 PM
Benzo(a)pyrene	ND	0.080	μg/L	1	11/27/2013 09:12 PM
Benzo(b)fluoranthene	ND	0.090	μg/L	1	11/27/2013 09:12 PM
Benzo(b-k)fluoranthene	ND	0.11	μg/L	1	11/27/2013 09:12 PM
Benzo(g,h,i)perylene	ND	0.080	μg/L	1	11/27/2013 09:12 PM
Benzo(k)fluoranthene	ND	0.050	μg/L	1	11/27/2013 09:12 PM
Chrysene	ND	0.050	μg/L	1	11/27/2013 09:12 PM
Dibenzo(a,h)anthracene	ND	0.080	μg/L	1	11/27/2013 09:12 PM
Fluoranthene	ND	0.070	μg/L	1	11/27/2013 09:12 PM
Fluorene	ND	0.050	μg/L	1	11/27/2013 09:12 PM
Indeno(1,2,3-cd)pyrene	ND	0.070	μg/L	1	11/27/2013 09:12 PM
Naphthalene	ND	0.070	μg/L	1	11/27/2013 09:12 PM
Phenanthrene	ND	0.080	μg/L	1	11/27/2013 09:12 PM
Pyrene	ND	0.050	μg/L	1	11/27/2013 0 9:12 PM
Surr: 2-Fluorobiphenyl	56.6	10-112	%REC	1	11/27/2013 09:12 PM
Surr: 4-Terphenyl-d14	89.6	10-132	%REC	1	11/27/2013 09:12 PM
Surr: Nitrobenzene-d5	69.4	15-110	%REC	1	11/27/2013 09:12 PM
VOLATILE ORGANIC COMPOUNDS		SW82	60		Aπalyst: ΑΚ
1,1,1-Trichloroethane	ND	1.0	μg/L	1	11/30/2013 04:30 AM
1,1,2,2-Tetrachtoroethane	ND	1.0	μg/L	1	11/30/2013 04:30 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	11/30/2013 04:30 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	11/30/2013 04:30 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	11/30/2013 04:30 AM
1,2-Dichloroethane	ND	1.0	μg/L	1	11/30/2013 04:30 AM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-4

Collection Date: 11/21/2013 01:00 PM

Work Order: 13111249

Lab ID: 13111249-08

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloropropane	ND		2.0	μg/L	1	11/30/2013 04:30 AM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 04:30 AM
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 04:30 AM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 04:30 AM
Acetone	ND		20	μg/L	1	11/30/2013 04:30 AM
Benzene	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Bromoform	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Bromomethane	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Carbon disulfide	ND		2.5	μg/L	.1	11/30/2013 04:30 AM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Chlorobenzene	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Chloroethane	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Chloroform	ND		1.0	μg/L	1	11/30/2013 04:30 AM
Chloromethane	ND		1.0	μg/L	1	11/30/2013 04:30 AM
cis-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
Dibromochloromethane	ND		1.0	μg/L	1	11/30/2013 04:30 AN
Ethylbenzene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
m,p-Xylene	ND		2.0	μg/L	1	11/30/2013 04:30 AM
Methylene chloride	ND		5.0	μg/L	1	11/30/2013 04:30 AM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
Styrene	ND		1,0	μg/L	1	11/30/2013 04:30 AN
Tetrachloroethe ne	ND		2.0	μg/L	1	11/30/2013 04:30 AN
Toluene	ND		1.0	μ g /L	1	11/30/2013 04:30 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 04:30 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 04:30 AN
Vinyl chloride	ND		1.0	µg/L	1	11/30/2013 04:30 AN
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 04:30 AN
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	11/30/2013 04:30 AN
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 04:30 AM
Surr: 1,2-Dichloroethane-d4	98.2		70-120	%REC	1	11/30/2013 04:30 AN
Surr: 4-Bromofluorobenzene	93.8		75-120	%REC	1	11/30/2013 04:30 AN
Surr: Dibromofluoromethene	109		85-115	%REC	1	11/30/2013 04:30 AM
Surr: Toluene-d8	99.6		85-120	%REC	1	11/30/2013 04:30 AN

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-4 FD

Collection Date: 11/21/2013 01:00 PM

Work Order: 13111249

Lab ID: 13111249-09

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA (DISSOLVED)			SW747	0	Prep Date: 12/3	3/2013 Analyst: LR
Mercury	ND		0.00020	mg/L	1	12/4/2013 01:45 PM
METALS BY ICP-MS (DISSOLVED)			SW602	0A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	ND		0.0050	mg/L	1	11/30/2013 07:10 AM
Barium	0.11		0.0050	mg/L	1	11/30/2013 07:10 AM
Cadmium	ND		0.0020	mg/L	1	11/30/2013 07:10 AM
Chromium	ND		0.0050	mg/L	1	11/30/2013 07:10 AM
Lead	ND		0.025	mg/L	5	12/3/2013 10:13 PM
Selenium	ND		0.0050	mg/L	1	11/30/2013 07:10 AM
Silver	ND		0.0050	mg/L	1	11/30/2013 07:10 AM
POLYNUCLEAR AROMATIC HYDROCA	RBONS (PAI	HS) - SIN	SW827	0M	Prep Date: 11/2	27/2013 Analyst: HL
Асепарhthene	ND	•	0.060	μg/L	. 1	11/27/2013 09:45 PM
Acenaphthylene	ND		0.080	μg/L	1	11/27/2013 09:45 PM
Anthracene	ND		0.060	μg/L	1	11/27/2013 09:45 PM
Benzo(a)anthracene	ND		0.040	μg/L	1	11/27/2013 09:45 PM
Benzo(a)pyrene	ND		0.080	μg/L	1	11/27/2013 09:45 PM
Benzo(b)fluoranthene	ND		0.090	μg/L	1	11/27/2013 09:45 PM
Benzo(b-k)fluoranthene	ND		0.11	μg/L	1	11/27/2013 09:45 PM
Benzo(g,h,i)perylene	ND		0.080	μg/L	1	11/27/2013 09:45 PM
Benzo(k)fluoranthene	ND		0.050	μg/L	1	11/27/2013 09:45 PM
Chrysene	ND		0.050	μg/L	1	11/27/2013 09:45 PM
Dibenzo(a,h)anthracene	ND		0.080	μg/L	1	11/27/2013 09:45 PM
Fluoranthene	ND		0.070	μg/L	1	11/27/2013 09:45 PM
Fluorene	ND		0.050	μg/L	1	11/27/2013 09:45 PM
Indeno(1,2,3-cd)pyrene	ND		0.070	μg/L	· 1	11/27/2013 09:45 PM
Naphthalene	ND		0.070	μg/L	1	11/27/2013 09:45 PM
Phenanthrene	ND		0.080	μg/L	1	11/27/2013 09:45 PM
Pyrene	ND		0.050	μg/L	1	11/27/2013 09:45 PM
Surr: 2-Fluorobiphenyl	51.4		10-112	%REC	1	11/27/2013 09:45 PM
Surr: 4-Terphenyl-d14	84.8		10-132	%REC	1	11/27/2013 09:45 PM
Surr: Nitrobenzene-d5	58.8		15-110	%REC	1	11/27/2013 09:45 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0		Analyst: AK
1,1,1-Trichloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,1,2,2-Tetrachloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,1,2-Trichloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,1-Dichloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,1-Dichloroethene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,2-Dichloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-4 FD

Collection Date: 11/21/2013 01:00 PM

Datc: 12-Dec-13

Work Order: 13111249

Lab ID: 13111249-09
Matrix: WATER

1,2-Dichloropropane	Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Hexanone ND 5.0 μg/L 1 12/2/2013 03:06 PM 4-Methyl-2-pentanone ND 5.0 μg/L 1 12/2/2013 03:06 PM Acetone 24 20 μg/L 1 12/2/2013 03:06 PM Benzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromodichloromethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromomethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromomethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Carbon tetrachloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloropetrane ND 1.0 μg/L 1 12/2/2013 03:06 PM Cis	1,2-Dichloropropane	ND		2.0	μg/L	1	12/2/2013 03:06 PM
4-Methyl-2-pentanone ND 5.0 μg/L 1 12/2/2013 03:06 PM Acetone 24 20 μg/L 1 12/2/2013 03:06 PM Benzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromodichloromethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromoform ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromomethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Carbon detrachloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Carbon detrachloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chlor	2-Butanone	8.9		5.0	μg/L	1	12/2/2013 03:06 PM
Acetone 24 20 µg/L 1 12/2/2013 03:06 PM Benzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Bromodichloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Bromomethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Carbon disulfide ND 2.5 µg/L 1 12/2/2013 03:06 PM Carbon tetrachloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Chlo	2-Hexanone	ND		5.0	μg/L	1	12/2/2013 03:06 PM
Benzene	4-Methyl-2-pentanone	ND		5.0	μg/L	1	12/2/2013 03:06 PM
Bromodichloromethane	Acetone	24		20	μg/L	1	12/2/2013 03:06 PM
Bromoform ND 1.0 μg/L 1 12/2/2013 03:06 PM Bromomethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Carbon disulfide ND 2.5 μg/L 1 12/2/2013 03:06 PM Carbon tetrachloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroformethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Cis-1,2-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Cis-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Cistyleace ND 1.0 μg/L 1 12/2/2013 03:06 PM Ethylberizene ND 1.0 μg/L 1 12/2/2013 03:06 PM <t< td=""><td>Benzene</td><td>ND</td><td></td><td>1.0</td><td>μg/L</td><td>1</td><td>12/2/2013 03:06 PM</td></t<>	Benzene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Bromomethane	Bromodichloromethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Carbon disulfide ND 2.5 μg/L 1 12/2/2013 03:06 PM Carbon tetrachloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloromethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloromethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Chloromethane ND 1.0 μg/L 1 12/2/2013 03:06 PM Cis-1,2-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Cis-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 μg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 μg/L 1 12/2/2013 03:06 PM <	Bromoform	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Carbon tetrachloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Cis-1,2-Dichloroptoethene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM	Bromomethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Carbon tetrachloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Chlorobenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Cis-1,2-Dichloroptoethene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM	Carbon disulfide	ND		2.5	µg/L	1	12/2/2013 03:06 PM
Chloroethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Chloroform ND 1.0 µg/L 1 12/2/2013 03:06 PM Chlorofethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Cis-1,2-Dichloropthene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM <t< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>1.0</td><td></td><td>1</td><td>12/2/2013 03:06 PM</td></t<>	Carbon tetrachloride	ND		1.0		1	12/2/2013 03:06 PM
Chloroform ND 1.0 µg/L 1 12/2/2013 03:06 PM Chloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM	Chlorobenzene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Chloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbene chloride ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM	Chloroethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
cis-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM	Chloroform	ND		1.0	μg/L	1	12/2/2013 03:06 PM
cis-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM m,p-Xylene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM <t< td=""><td>Chloromethane</td><td>ND</td><td></td><td>1.0</td><td>μg/L</td><td>1</td><td>12/2/2013 03:06 PM</td></t<>	Chloromethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Dibromochloromethane ND 1.0 µg/L 1 12/2/2013 03:06 PM Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM m,p-Xylene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM	cis-1,2-Dichloroethene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Ethylbenzene ND 1.0 µg/L 1 12/2/2013 03:06 PM m,p-Xylene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM O-Xylene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 µg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 µg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	cis-1,3-Dichloropropene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
m,p-Xylene ND 2.0 µg/L 1 12/2/2013 03:06 PM Methylene chloride ND 5.0 µg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 µg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 µg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 µg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloroethene ND 1.0 µg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 µg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 µg/L 1 12/2/2013 03:06 PM	Dibromochloromethane	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Methylene chloride ND 5.0 μg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 μg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 μg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 2.0 μg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr. 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03	Ethylbenzene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Methylene chloride ND 5.0 μg/L 1 12/2/2013 03:06 PM o-Xylene ND 1.0 μg/L 1 12/2/2013 03:06 PM Styrene ND 1.0 μg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 2.0 μg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr. 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03	m,p-Xylene	ND		2.0	μg/L	1	12/2/2013 03:06 PM
Styrene ND 1.0 μg/L 1 12/2/2013 03:06 PM Tetrachloroethene ND 2.0 μg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloroethene, Total ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC	Methylene chloride	ND		5.0		1	12/2/2013 03:06 PM
Tetrachloroethene ND 2.0 μg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr. 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr. Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	o-Xylene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Tetrachloroethene ND 2.0 μg/L 1 12/2/2013 03:06 PM Toluene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr. 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr. Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Styrene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
trans-1,2-Dichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr. 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr. 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr. Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Tetrachloroethene	ND		2.0		1	12/2/2013 03:06 PM
trans-1,3-Dichloropropene ND 1.0 μg/L 1 12/2/2013 03:06 PM Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Toluene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Trichloroethene ND 1.0 μg/L 1 12/2/2013 03:06 PM Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xyienes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	trans-1,2-Dichloroethene	ND		1,0	μg/L	1	12/2/2013 03:06 PM
Vinyl chloride ND 1.0 μg/L 1 12/2/2013 03:06 PM 1,2-Dichloroethene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 μg/L 1 12/2/2013 03:06 PM Xyienes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	trans-1,3-Dichloropropene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,2-Dichloroethene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 µg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Trichloroethene	ND		1.0	μg/L	1	12/2/2013 03:06 PM
1,2-Dichloroethene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM 1,3-Dichloropropene, Total ND 2.0 µg/L 1 12/2/2013 03:06 PM Xylenes, Total ND 3.0 µg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Vinyl chloride	ND		1.0	μg/L	1	12/2/2013 03:06 PM
Xylenes, Total ND 3.0 μg/L 1 12/2/2013 03:06 PM Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	1,2-Dichloroethene, Total	ND		2.0		1	12/2/2013 03:06 PM
Surr: 1,2-Dichloroethane-d4 100 70-120 %REC 1 12/2/2013 03:06 PM Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	1,3-Dichloropropene, Total	ND		2.0	μg/L	1	12/2/2013 03:06 PM
Surr: 4-Bromofluorobenzene 99.2 75-120 %REC 1 12/2/2013 03:06 PM Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Xylenes, Total	ND		3.0		1	12/2/2013 03:06 PM
Surr: Dibromofluoromethane 98.4 85-115 %REC 1 12/2/2013 03:06 PM	Surr: 1,2-Dichloroethane-d4	100		70-120	%REC	1	12/2/2013 03:06 PM
	Surr: 4-Bromofluorobenzene	99.2		75-120	%REC	1	12/2/2013 03:06 PM
Surr: Toluene-d8 101 85-120 %REC 1 12/2/2013 03:06 PM	Surr: Dibromofluoromethane	98.4		85-115	%REC	1	12/2/2013 03:06 PM
	Surr: Toluene-d8	101		85-120	%REC	1	12/2/2013 03:06 PM

Date: 12-Dec-13

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

Sample ID: Trip Blank
Collection Date: 11/21/2013

Work Order: 13111249

Lab ID: 13111249-10

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS			SW826	0		Analyst: AK
1,1,1-Trichloroethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
1,1,2,2-Tetrachloroethane	ND		1.0	µg/L	1	11/30/2013 01:16 AM
1,1,2-Trichloroethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
1,1-Dichloroethane	ND		1.0	µg/L	1	11/30/2013 01:16 AM
1,1-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
1,2-Dichloroethane	ND		1.0	µg/L	1	11/30/2013 01:16 AM
1,2-Dichloropropane	ND		2.0	µg/L	1	11/30/2013 01:16 AM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 01:16 AM
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 01:16 AM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 01:16 AM
Acetone	ND		20	μg/L	1	11/30/2013 01:16 AM
Benzene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Bromoform	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Bromomethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Carbon disulfide	ND		2.5	μg/L	1	11/30/2013 01:16 AM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Chlorobenzene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Chloroethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Chloroform	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Chloromethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
cis-1,2-Dichloroethene	ND		1.0	µg/L	1	11/30/2013 01:16 AM
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Dibromochloromethane	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Ethylbenzene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
m,p-Xylene	ND		2.0	μg/L	1	11/30/2013 01:16 AM
Methylene chloride	ND		5.0	μg/L	1	11/30/2013 01:16 AM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Styrene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Tetrachioroethene	ND		2.0	μg/L	1	11/30/2013 01:16 AM
Toluene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 01:16 AM
Vinyl chloride	ND		1.0	μg/L	1	11/30/2013 01:16 AM
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 01:16 AM
1,3-Dichioropropene, Total	ND		2.0	μg/L	1	11/30/2013 01:16 AM
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 01:16 AM
Surr: 1,2-Dichloroethane-d4	105		70-120	%REC	1	11/30/2013 01:16 AM

Date: 12-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Trip Blank

Collection Date: 11/21/2013

Work Order: 13111249

Lab ID: 13111249-10

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 4-Bromofluorobenzene	88.2		75-120	%REC	1	11/30/2013 01:16 AM
Surr: Dibromofluoromethane	98.8		85-115	%REC	1	11/30/2013 01:16 AM
Surr: Toluene-d8	102		85-120	%REC	1	11/30/2013 01:16 AM

Date: 12-Dec-13

QC BATCH REPORT

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53658	instrument ID HG1		Method	i: SW747	1				F-17.44	
MBLK	Sample ID: MBLK-53658-53658				Units: mg/	Kg	Analys	is Date: 12	2/2/2013 0	2:11 PM
Client ID:	Run ID): HG1_	131202A		SeqNo:256	1966	Prep Date: 11/2	5/2013	DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.020	1							
LCS	Sample ID: LCS-53658-53658				Units:mg/	Kg	Analys	is Date: 12	2/2/2013 0	2:14 PM
Client ID:	Run 10): HG1_	131202A		SeqNo:256	1967	Prep Date: 11/2	5/2013	DF: 1	
Analyte	Result	PQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1755	0.020	0.1665		0 105	80-120	0			
MS	Sample ID: 13111249-05 B MS				Units: mg/	Kg	Analysi	is Date: 12	2/2/2013 0	2:53 PM
Client ID: SS-3	Run ID	: HG1_	131202A		SeqNo:256	1983	Prep Date: 11/2	5/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1978	0.019	0.1586	0.0334	4 104	75-1 2 5	0			
MS	Sample ID: 13111249-06BMS				Units: mg/	Kg	Analysi	is Date: 12	2/2/2013 0	3:00 PM
Cilent ID: SB-14	Run (D	: HG1_	131202A		SeqNo:256	1986	Prep Date: 11/2	5/2013	DF: 1	
Analyte	Result	PQL	. SPK Vai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1729	0.017	0.1415	0.0222	1 107	75-125	0			
MSD	Sample ID: 13111249-05BMSD				Units: mg/	Kg	Analysi	is Date: 12	2/2/2013 0	2:55 PM
Client ID: SS-3	Run ID	: HG1_	131 2 02A		SeqNo:256	1984	Prep Date: 11/2	5/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.2063	0.019	0.1591	0.0334	4 109	75-125	0.1978	4.21	35	
MSD	Sample ID: 13111249-06BMSD				Units: mg/	Kg	Anaiysi	is Date: 12	/2/2013 0	3:03 PM
Client ID: SB-14		: HG1_	131 202 A		SeqNo:2561	_	Prep Date: 11/2	-	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
Mercury	0.1747	0.017	0.1431	0.0222	1 107	75-1 2 5	0.1729	1.02	35	
The following sam	ples were analyzed in this batch:		3111249-01B 3111249-04B		11249-02B 11249-05B		111249-03B 111249-06B			

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

QC BATCH REPORT

Batch ID: 53776	Instrument ID HG1		Method	: SW747	0					
MBLK	Sample ID: MBLK-53776-53776	. 	•		Units: mg	J/L	Analys	sis Date: 1	2/4/2013 1	1:48 AM
Client ID:	Run	ID: HG1_1 :	31204A		SeqNo:25	64542	Prep Date: 12/3/2013		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.00020								
LCS	Sample ID: LCS-53776-53776				Units: mg	ı/L	Analys	sis Date: 1	2/4/2013 1	1:51 AM
Client ID:	Run	Run ID: HG1_131204A			SeqNo:25	64543	Prep Date: 12/	3/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.002037	0.00020	0.002		0 102	80-120	()		
MS	Sample ID: 13111249-07CMS			Units: mg/L			Analys	sis Date: 1	2/4/2013 1	1:56 AM
Client ID: TMW-2	Run	ID: HG 1_1:	31204A	SeqNo;2564545			Prep Date: 12/	3/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001852	0.00020	0.002	-0.00001	1 93.2	7 5-125)		
MSD	Sample ID: 13111249-07CMSD		·····		Units: mg	ı/L	Analys	sis Date: 1	2/4/2013 1	1:58 AM
Client ID: TMW-2	Run	ID: HG1_1 :	31204A		SeqNo:25	64546	Prep Date: 12/	3/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.002091	0.00020	0.002	-0.00001	1 105	75-125	0.001852	2 12.1	20	7
The following sam	ples were analyzed in this batch:	13	111249-070	13	111249-080	13	111249-09C			

QC BATCH REPORT

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53677	instrument ID ICPMS2		Method	: \$W602	0A						
MBLK	Sample ID: MBLK-53677-53677				U	nits: mg/L		Anaiy	1/30/2013	05:56 AM	
Client ID:	•	D: ICPMS2	_131127A		Sec	qNo: 2559	943	Prep Date: 11/	26/2013	DF: 1	
			_	SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
	ND	0.0050									
Arsenic Barium	ND	0.0050									
Chromium	ND	0.0050									
Lead	ND	0.0050									
Selenium	ND	0.0050									
Silver	DN	0.0050									
MBLK	Sample ID: MBLK-53677-53677				U	Inits: mg/L		Analy	sis Date: 1	1/30/2013	05:56 AN
Client ID:	•	D: ICPMS2	_131127B		Se	qNo:2560	243	Prep Date: 11/	26/2013	DF:1	
Choire ID.	ran i			ODK Dif				RPD Ref		RPD	
A - distri	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	Value	%RPD	Limit	Qual
Analyte	0.000191	0.0020	OT IX VOI			701100	**************************************				J
Cadmium	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	0.0020						A-alu	sis Date: 1	412012042	06.01 AN
LCS	Sample ID: LCS-53677-53677				Inits: mg/l				DF: 1	00:01 AN	
Client ID:	Run I	D: ICPMS2	2_131127A		Se	qNo:2559	944	Prep Date: 11	20/2013		
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte		- 44					00.400	****	0		
Arsenic	0.09822	0.0050	0.1		0	98.2	80-120 80-120		0		
Barium	0.09546 0.09666	0.0050	0.1		0	95.5 96.7	80-120		0		,,
Chromium	0.09398	0.0050 0.0050	0.1		0	94	80-120		0		
Lead	0.09836	0.0050	0.1		0	98.4	80-120		0		
Selenium	0.1046	0.0050	0.1		0	105	80-120		0		
Silver											
LCS	Sample ID: LCS-53677-53677					Jnits: mg/l		·	11/30/2013	06:01 AN	
Client ID:	Run I	D: ICPMS:	2_131127B		Se	qNo:2560)244	Prep Date: 11	126/2013	DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte							90 120		0		
Cadmium	0.09759	0.0020	0.1		0	97.6	80-120				
MS	Sample ID: 13111249-07CMS					Jnits: mg/			/sis Date: *		06:41 AM
Client ID: TMW-2	Run I	D: ICPMS	2_131127A		Se	eqNo:2559		Prep Date: 11	126/2013	DF:1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.1026	0.0050	0.1	0.0033	357	99.2	75-1 2 5		0		
Barium	0.2433	0.0050	0.1	0.14		101	75-125		0	******	
Chromium	0.09591	0.0050	0.1	0.0013		94.6	75-125		0		
Selenium	0.101	0.0050	0.1	0.0020		99	75-125		0		
COLUMN	0.1005	0.0050	0.1	-3.486E		101	75-125		0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53677	Instrument ID ICPMS2		Method	l: SW6020A						
MS	Sample ID: 13111249-07CMS			ļ	Units: mg/	L	Analysi	s Date: 11	/30/2013	06:41 AN
Client ID: TMW-2	Run I	D: ICPMS:	2_131127B	Se	eqNo:2560	0251	Prep Date: 11/2	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	0.09582	0.0020	0.1	0.0001421	95.7	75-125	0			
IMS	Sample ID: 13111249-07CMS			ļ	Units: mg/	L	Analysi	s Date: 12	/4/2013 0	5:21 PM
Client ID: TMW-2	Run I	D: ICPMS	2_131204A	Se	eqNo:256	5851	Prep Date: 11/2	6/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Lead	0.0997	0.025	0.1	0.0001082	99.6	75-125	0			
MSD	Sample ID: 13111249-07CMSD			i	Units: mg/	L	Analysi	/30/2013	06:47 AN	
Client ID: TMW-2	Run I	D: ICPMS:	2_131127A	Se	eqNo:2559	952	Prep Date: 11/26/2013 DF:			
Analyte	Result	PQL	SPK Val	SPK-Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.1046	0.0050	0.1	0.003357	101	75-125	0.1026	1.93	20	
Barium	0.2451	0.0050	0.1	0.1427	102	75-125	0.2433	0.737	20	
Chromium	0.09701	0.0050	0.1	0.001357	95.7	75-125	0.09591	1.14	20	
Selenium	0.1011	0.0050	0.1	0.002035	99.1	75-12 5	0.101	0.099	20	
Silver	0.1012	0.0050	0.1	-3.486E-06	101	75-125	0.1005	0.694	20	
MSD	Sample ID: 13111249-07CMSD			I	Units: mg/	L	Analysi	s Date: 11	/30/2013	06:47 AN
Client ID: TMW-2	Run I	D: ICPMS:	2_131127B	Se	eqNo: 256 (0252	Prep Date: 11/2	6/2013	DF: 1	
Analyte	Resuit	PQL	SPK Val	SPK Ref Value	%REC	Control Li m it	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	0.09477	0.0020	0.1	0.0001421	94.6	75-125	0.09582	1.1	20	
MSD	Sample ID: 13111249-07CMSD				Units:mg/	L	Analys	s Date: 12	2/4/2013 0	5:27 PM
Client ID: TMW-2	Run I	D: ICPMS	2_131204A	Se	∋qNo:2 56 5	5852	Prep Date: 11/2	6/2013	DF: 5	
Analyta	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	N 2 - LOAN LABORATOR									CKCIEI
Lead	0.0989	0,025	0.1	0.0001082	8.89	75-125	0.0997	0.806	20	
The following sam	ples were analyzed in this batch:	13	3111249-070	1311	1249-08C	13	111249-09C			

QC BATCH REPORT

Triad Engineering, Inc.

13111249

Project:

Work Order:

Johns Manville-Riverside Parcels

Batch ID: 53721	Instrument ID ICPMS1	d: SW602	0A								
MBLK	Sample ID: MBLK-53721-53721			***	Units:mg/Kg		.g	Analys	sis Date: 1	1/27/2013	11:50 PM
Client ID:	Run ID	D: ICPMS1_131127A			SeqNo:255		573	Prep Date: 11/27/2013		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%R		Limit	Value	%RPD	Limit	Qual
Arsenic	ND	0.25									
Cadmium	ND	0.10									
Chromium	0.07185	0.25									J
Selenium	ND	0.25									
Silver	ND	0.25	-								
MBLK	Sample ID: MBLK-53721-53721			·	Units:	mg/K	(g	Analy	sis Date: 1	2/10/2013	06:08 PM
Client ID:	Run ID	: ICPMS:	2_131 2 10A		SeqNo:	2573 [,]	170	Prep Date: 11/	27/2013	DF: 1	
				SPK Ref			Control	RPD Ref		RPD Limit	
Analyte	Result	PQL	SPK Val	Value	%R	EC	Limit	Value	%RPD	Limit	Qual
Lead	0.003001	0.25									J
LCS	Sample ID: LCS-53721-53721				Units:	mg/K	(g	Analy	sis Date: 1	1/27/2013	11:57 PN
Client ID:	Run ID	: ICPMS	1_131127A	SeqNo:2559574			Prep Date: 11/	27/2013	DF: 1		
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%R	EC	Limit	Value	%RPD	Limit	Qual
Arsenic	4.524	0.25	5	***	0 9	0.5	80-120	(0		
Cadmium	4.674	0.10	5		0 9	3.5	80-120	(0		
Chromium	4.789	0.25	5		0 9	5.8	80-120		0		
Selenium	4.142	0. 2 5	5		0 8	2.8	80-120	ı	0		
Silver	5.26	0.25	5		0 1	05	80-120		0		
LCS	Sample ID: LCS-53721-53721				Units:	mg/¥	ζg	Analy	sis Date: 1	2/10/2013	06:14 PN
Client ID:	Run 10	: ICPMS	2_131210A		SeqNo:	2573	171	Prep Date: 11/	27/2013	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%F	EC	Limit	Value	%RPD	Limit	Qual
Lead	4.808	0.25	5		0 9	6.2	80-120	(0		
MS	Sample ID: 13111249-05BMS				Units:	mg/H	 (g	Analy	sis Date: 1	1/28/2013	02:13 AN
Client ID: SS-3	Run ID	: ICPMS	1_131127A		SeqNo:	2559	596	Prep Date: 11	/27/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%F	EC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	31.21	1.9	7.418	24	1.8 8	6.4	75-1 2 5		0		
Cadmium	8.568	0.74	7.418	5.0		7.7	7 5-1 25		0		s
Chromium	185.3	1.9	7.418	68.		570	75-125		0		SO
Lead	43.66	1.9	7.418	39.		0.2	75-125		0		so
Selenium	8.383	1.9	7.418	1.1		7.4	75-125		0		
Silver	8.524	1.9	7.418	0.59		107	75-125		0		

QC BATCH REPORT

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53721	Instrument ID ICPMS1		Method	: SW6020A	403							
MS	Sample ID: 13111249-06BMS			l	Jnits:mg/	Kg	Analysis Date: 11/28/2013 03:09 A					
Client ID: SB-14	,	D: ICPMS1	_131127A	Se	qNo:2559	9603	Prep Date: 11/2	7/2013	DF: 5			
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Analyte						75 405	0			***		
Arsenic	13.68	1.8	7.042	7.357	89.8	75-125	0					
Cadmium	7.616	0.70	7.042	0.9234	95	75-125	0					
Chromium	21.99	1.8	7.042	13.4	122	75-125	_			s		
Lead	17.54	1.8	7.042	18.23	-9.93	75-125	0			<u> </u>		
Selenium	7.634	1.8	7.042	0.9248	95.3	75-125	0					
Silver	7.901	1.8	7.042	0.1079	111	75-125	0					
MSD	Sample ID: 13111249-05BMSD		- 4		Units: mg/	Kg	Analysi	s Date: 11	/28/2013	02:19 AM		
Client ID: SS-3	Run I	D: ICPMS	1_1311 2 7A	Se	eqNo: 255	9597	Prep Date: 11/2	7/2013	DF: 5			
				SPK Ref Value		Control Limit	RPD Ref Value	W BBB	RPD Limit	Qual		
Analyte	Result	PQL	SPK Val	Value	%REC		70120	%RPD		Quai		
Arsenic	29.01	1.9	7.496	24.8	56.2	75-125	31.21	7.3	25	s		
Cadmium	8.261	0.75	7.496	5.026	43.1	75-125	8.568	3.65	25	S		
Chromium	65.48	1.9	7.496	68.82	-44.5	75-125	18 5.3	95.6	25	SRO		
Lead	40.85	1.9	7.496	39.93	12.3	75-125	43.66	6.63	25	SO		
Selenium	7.976	1.9	7.496	1.154	91	75-125	8.383	4.97	25			
Silver	8.25	1.9	7.496	0.5958	102	75-125	8.524	3.27	2 5			
MSD	Sample ID: 13111249-06BMSD				Units: mg/	/Kg	Analys	is Date: 11	/28/2013	03:34 AN		
Client ID: SB-14	Run	D: ICPMS	1_131127A	S	eqNo:255	9607	Prep Date: 11/2	7/2013	DF: 5			
				SPK Ref		Control	RPD Ref Value		RPD Limit	Q1		
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	value	%RPD	LIIIIK	Qual		
Arsenic	14.22	1.7	6.983	7.357	98.3	75-125	13.68	3. 8 8	25			
Cadmium	7.703	0.70	6.983	0.9234	97.1	75-125	7.616	1.13	25			
Chromium	21.74	1.7	6.983	13.4	119	75-125	21.99	1.13	25			
Lead	18.19	1.7	6.983	18.23	-0.571	75-125	17.54	3.69	25	S		
Selenium	7.524	1.7	6.983	0.9248	94.5	75-125	7.634	1.44	25			
Silver	7.874	1.7	6.983	0.1079	111	75-125	7.901	0.353	25			
The following sar	mples were analyzed in this batch:	i	3111249-01E 3111249-04E		1249-02B 1249-05B		111249-03B 111249-06B					

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

QC BATCH REPORT

Batch ID: 54069	Instrument ID ICPMS2		Method	: SW602	0A						
MBLK	Sample ID: MBLK-54069-54069				U	nits: mg/l	√ g	Analy	2/11/2013	08:22 PN	
Client ID:	Run ID	: ICPMS2	2_131211A		Sec	No:2575	204	Prep Date: 12/	11/2013	DF: 1	
Analyto	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte			Of IX Yui			701120					
Arsenic	ND 	0.25									
Barium	ND	0.25					•				
Cadmium	ND	0.10									
Chromium	ND	0.25									
Lead	ND	0.25									
Selenium	ND	0.25						 ~			
Silver	ND	0.25									
LCS	Sample ID: LCS-54069-54069				U	nits: mg/l	Kg	Anaiy	sis Date: 1	2/11/2013	08:27 PM
Client ID:	Run ID	: ICPMS2	2_131211A	SeqNo:2575207				Prep Date: 12	DF: 1		
A	Result	PQL	SPK Val	SPK Ref Value		%REC	Controi Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Result	FUZL	JEIL VAI			7011110				·	
Arsenic	4.74	0.25	5		0	94.8	80-120		0		
Barium	4.902	0.25	5		0	98	80-120		0		
Cadmium	4.584	0.10	5		0	91.7	80-120		0		
Chromium	4.768	0.25	5		0	95.4	80-120		0		
Lead	4.798	0.25	5		0	96	80-120		0		
Selenium	4.69	0.25	5		0	93.8	80-120		0		
Silver	4.504	0.25	5		0	90.1	80-120		0		
MS	Sample ID: 13111249-05BMS				U	hits:mg/	Kg	Anaiy	sis Date: 1	2/11/2013	09:27 PA
Client ID: SS-3	Run ID	: (CPMS	2_1 312 11 A		Se	qNo: 25 7	5235	Prep Date: 12	/11/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Contro! Limit	RPD Ref Value	%RPD	RPD Limit	Qual
L	28.63	1.6	6.394	17.	96	167	75-125	m · · ·	0		s
Arsenic	126.7	1.6	6.394	188		-970	75-125		0		so
Barium Cadmium	6.509	0.64	6.394	0.39		95.6	75-125	****	0		
Chromium	52.65	1.6	6.394	67.		-230	75-125		0		so
Lead	35.33	1.6	6.394	35.		-1.75	75-125		0		so
Selenium	6.816	1.6	6,394	0.77		94.5	75-125		0		
Silver	5.748	1.6	6.394	0.031		89.4	75-125		0		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

rroject.	JOHNIS MANUTICE RIVERSIGE T ALCO	10										
Batch ID: 54069	Instrument ID ICPMS2		Method	: SW6020A								
MS	Sample ID: 13111249-06BMS			ļ	Jnits: mg/l	Kg	Analysis Date: 12/11/2013 09:54 Pl					
Client ID: SB-14	Run ID: ICPMS2_131211A			SeqNo:2575247			Prep Date: 12/1	1/2013	DF: 5			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Controi Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Arsenic	14.57	1.7	6.711	7.233	109	75-125	0					
Barium	127.6	1.7	6.711	104.5	344	75-125	0			so		
Cadmium	6.919	0.67	6.711	0.1462	101	75-125	0					
Chromium	22.05	1.7	6.711	11,99	150	75-125	0			s		
Lead	22.07	1.7	6.711	10.89	167	75-125	0			S		
Selenium	7.55	1.7	6.711	0.8464	99.9	75-125	0					
Silver	6.03	1.7	6.711	0.03393	89.3	75-125	0					
MSD	Sample ID: 13111249-05BMSD			l	Units:mg/	Kg	Analys	is Date: 12	/11/2013	09:32 PM		
Client ID: \$\$-3	Run ID	:ICPMS	2_131211A	SeqNo: 257523 7			Prep Date: 12/1	DF: 5				
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
				47.00	00.0	70.405	20.02	46.0	25			
Arsenic	24.34	1.6	6,427	17.96	99.2	75-125	28.63 1 2 6.7		25 25	SO		
Barium	127.7 6.645	1.6 0.64	6.427	188.7 0.3985	-950 97.2	75-125 75-125	6.509		25	30		
Cadmium	50.16		6.427	67,35	-268	75-125	52.65		25	so		
Chromium	30.79	1.6	6.427	35.44	-72,3	75-125	35.33		25	so		
Lead	6.922	1.6	6.427	0.7766	95.6	75-125	6.816		25	50		
Selenium Silver	5.755	1.6	6.427	0.03103	89.1	75-125	5.748		25			
MSD	Sample ID: 13111249-06BMSD				Units: mg/	Ka	Anaivs	sis Date: 12	2/11/2013	09:59 PM		
Client ID: SB-14	,	: ICPMS	2_131211A		eqNo:257	•	Prep Date: 12/		DF:5			
Charles D. CD 14				SPK Ref	,	Control	RPD Ref		RPD			
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual		
Arsenic	13.31	1.7	6.739	7.233	90.2	75-125	14.57	9.03	25			
Barium	118.6	1.7	6.739	104.5	209	75-125	127.6	7.33	25	so		
Cadmium	6.57	0.67	6.739	0.1462	95.3	75-125	6.919	5.18	25			
Chromium	19.75	1.7	6.739	11.99	115	75-125	22.05	11	2 5			
Lead	19.66	1.7	6.739	10.89	130	75-125	22.07	11.6	25	S		
Selenium	6.924	1.7	6.739	0.8464	90.2	75-125	7.55	8.66	25			
Silver	5.96	1.7	6.739	0.03393	87.9	75-1 2 5	6.03	1.17	25			
The following sar	nples were analyzed in this batch:	i	3111249-01E 3111249-04E		1249-02B 1249-05B		111249-03B 111249-06B					

QC BATCH REPORT

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Method	: SW827	OM						
MBLK Sa	mple ID: SBLKS1-53684-53684				Ur	nits:µg/K	(g	Analy	sis Date: 1	1/27/2013	08:39 PN
Client ID:	Run ID	SVMS7	_131127A		Seq	No:2562	2108	Prep Date: 11	27/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limil	Qual
Acenaphthene	ND	3.3									
Acenaphthylene	ND	3.3									
Anthracene	ND	3.3									
Benzo(a)anthracene	ND	3.3									
Benzo(a)pyrene	ND	3.3									
Benzo(b)fluoranthene	ND	3.3									
Benzo(b-k)fluoranthene	ND	6.7									
Benzo(e)pyrene	ND	10									
Benzo(g,h,i)perylene	ND	3.3									
Benzo(k)fluoranthene	ND	3.3									
Chrysene	ND	3,3									
Dibenzo(a,h)anthracene	ND	3.3									
Fluoranthene	ND	3.3									
Fluorene	ND	3.3									
Indeno(1,2,3-cd)pyrene	ND	3.3									
Naphthalene	ND	3.3						·			
Phenanthrene	ND	3.3									
Pyrene	ND	3.3									
Sum: 2-Fluorobipheny	106	0	166.7		0	63.6	12-100		0		
Surr: 4-Terphenyl-d14	172	0	166.7		0	103	25-137		0		
Surr: Nitrobenzene-d5	111.7	0	166.7		0	67	37-107		0		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	instrument ID SVMS7		Method	: SW827	OM						
LCS	Sample ID: SLCSS1-53684-53684				Ĺ	Jnits:µg/K	(g	Analysis D	ate: 11	1/27/2013	01:30 PM
Client ID:	Run fD:	SVMS7	_131127A		Se	qNo: 256 2	2101	Prep Date: 11/27/20	013	DF: 1	
Analyte	Resuit	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %	RPD	RPD Limit	Qual
Acenaphthene	55	3.3	66.67		0	82.5	35-110	0			
Acenaphthylene	50.67	3.3	66.67		0	76	35-115	0			
Anthracene	56	3.3	66.67		0	84	45-125	0			
Benzo(a)anthracene	58	3.3	66.67		0	87	50-105	0			
Benzo(a)pyrene	60	3.3	66.67		0	90	40-135	0			
Benzo(b)fluoranthene	63.67	3.3	66.67		0	95.5	55-120	0			
Benzo(b-k)fluoranthen	ne 124.7	6.7	133.3		0	93.5	55-120	0			
Benzo(g,h,i)perylene	67.67	3.3	66.67		0	102	55-115	0			
Benzo(k)fluoranthene	61	3.3	66.67		0	91.5	55-120	0			
Chrysene	62.67	3.3	66.67		0	94	55-120	0			
Dibenzo(a,h)anthracei	ne 63	3.3	66.67		0	94.5	45-115	0			
Fluoranthene	62	3.3	66.67		0	93	40-135	0			
Fluorene	60.67	3.3	66.67		0	91	45-105	0			
Indeno(1,2,3-cd)pyren	e 62.67	3.3	66.67		0	94	55-135	0			
Naphthalene	52.33	3.3	66.67		0	78.5	50-110	0			
Phenanthrene	54	3.3	66.67		0	81	55-125	0			
Pyrene	67	3.3	66.67		0	101	50-115	0			
Surr: 2-Fluorobiphe	ny! 115.7	0	166.7		0	69.4	12-100	0			
Surr: 4-Terphenyl-d	164.3	0	166.7		0	98.6	25-137	0			
Sum: Nitrobenzene-	d5 130.3	0	166.7		0	78.2	37-107	0			

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Method	: SW8270M						
MS	Sample ID: 13111249-06B MS			ι	Jnits:µg/k	(g	Analysi	s Date: 1	1/27/2013	04:15 PM
Client ID: SB-14	Run	ID: SVMS 7	_1311 2 7A	Se	qNo: 25 62	2102	Prep Date: 11/27	7/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	106.3	6.4	128.8	0	82.5	35-110	0			
Acenaphthylene	95.99	6.4	128.8	0.6585	74	35-115	0			
Anthracene	109.5	6.4	128.8	0.6585	84.5	45-125	0			
Benzo(a)anthracene	112.1	6.4	128.8	3.292	84.4	50-105	0			
Benzo(a)pyrene	117.9	6.4	128.8	4.28	88.2	40-135	0			
Benzo(b)fluoranthene	123.7	6.4	128.8	6.914	90.6	55-120	0			
Benzo(b-k)fluoranthe	ne 237.7	13	257.7	6.914	89.6	55-120	0			
Benzo(g,h,i)perylene	143.7	6.4	128.8	2.963	109	55-115	0			
Benzo(k)fluoranthene	114	6.4	128.8	1.97 5	87	55-120	0			
Chrysene	113.4	6.4	128.8	2.963	85.7	55-120	0			
Dibenzo(a,h)anthrace	ene 106.9	6.4	128.8	1.975	81.5	45-115	0			
Fluoranthene	125	6.4	128.8	3.951	93.9	40-135	0			
Fluorene	114	6.4	128.8	0	88.5	45-105	0			
Indeno(1,2,3-cd)pyrei	ne 112.1	6.4	128.8	3,292	8 4 .4	55-135	0			
Naphthaiene	88.26	6.4	128.8	0	68.5	50-110	0			
Phenanthrene	103.7	6.4	128.8	1.646	79.2	55-125	0			
Pyrene	124.3	6.4	128.8	4.609	92.9	50-115	0			
Surr: 2-Fluorobiphe	enyl 222.3	0	322.1	0	69	12-100	0			
Surr: 4-Terphenyl-	114 284.1	0	322.1	0	88.2	25-137	0			
Surr: Nitrobenzene	-d5 248	0	322.1	0	77	37-107	0			

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Metho	d: SW8270M					
MS	Sample ID: 13111249-05B MS				Units:µg/H	(g	Analysis Date:	11/27/2013	05:21 PN
Client ID: SS-3	Run I	D: SVMS7,	_131127A	S	eqNo: 256 2	2104	Prep Date: 11/27/2013	DF: 10	ð
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RPD	RPD Limit	Qual
Аселарhthene	117.3	65	130.4	0	90	35-110	0		
Acenaphthylene	189.1	65	130.4	76.6	86.3	35-115	0		
Anthracene	143.4	65	130.4	19.98	94.7	45-1 2 5	0		
Benzo(a)anthracene	365.1	65	130.4	226.5	106	50-105	0		S
Benzo(a)pyrene	404,2	65	1 3 0.4	273.1	101	40-135	0		
Benzo(b)fluoranthene	482.4	65	130.4	496.2	-10.6	55-120	0		s
Benzo(b-k)fluoranthen	e 74 9.7	130	260.8	496.2	97.2	55-120	0		
Benzo(g,h,i)perylene	391.2	65	130.4	246.4	111	55-115	0		
Benzo(k)fluoranthene	267.3	65	130.4	143.2	95.2	55-120	0		
Сһгуѕепе	358.6	65	130.4	216.5	109	55-120	0		
Dibenzo(a,h)anthracer	ne 189.1	65	130.4	53.28	104	45-115	0		
Fluoranthene	502	65	130.4	286.4	165	40-135	0		s
Fluorene	117.3	65	130.4	3.33	87.4	45-105	0		
Indeno(1,2,3-cd)pyren	e 312.9	65	130.4	186.5	97	55-135	0		
Naphthalene	97.79	65	130.4	3.33	72.4	50-110	0		
Phenanthrene	189.1	65	130.4	36.63	117	55-12 5	0		
Pyrene	573.7	65	130.4	369.7	156	50-115	0		s
Surr: 2-Fluorobiphe.	nyl 208.6	0	326	0	64	12-100	0		
Surr: 4-Terphenyl-d	14 332.5	0	326	0	102	25-137	0		
Surr: Nitrobenzene-	d5 208.6	0	326	0	64	37-107	0		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Method	: SW8270M						
MSD	Sample ID: 13111249-06B MSD			ι	Jnits: µg/F	(g	Analysi	s Date: 11	/27/2013	04:48 PM
Client ID: SB-14	Run (E	: SVMS7	_131127A	Se	eqNo:2562	2103	Prep Date: 11/2	7/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref V alue	%REC	Control Limit	RPD Ref V alue	%RPD	RPD Limit	Qual
Acenaphthene	103.2	6.3	125.8	0	82	35-110	106.3	2.98	40	
Acenaphthylene	93.74	6.3	125.8	0.6585	74	35-115	95.99	2.37	40	
Anthracene	105.1	6.3	125.8	0.6585	83	45-125	109.5	4.15	40	
Benzo(a)anthracene	109.5	6.3	125.8	3.292	84.4	50-105	112.1	2.37	40	
Benzo(a)pyrene	111.4	6.3	125.8	4.28	85.1	40-135	117.9	5.71	40	
Benzo(b)fluoranthene	121.4	6.3	125.8	6.914	91	55-120	123.7	1.86	40	
Benzo(b-k)fluoranthei	ne 230.9	13	251.7	6.914	89	55-120	237.7	2.92	40	
Benzo(g,h,i)perylene	129.6	6.3	125.8	2.963	101	55-115	143.7	10.3	40	
Benzo(k)fluoranthene	109.5	6.3	125.8	1.975	85.4	55-120	114	4.08	40	
Chrysene	108.8	6.3	125.8	2.963	84.1	55-120	113.4	4.09	40	
Dibenzo(a,h)anthrace	ne 107	6.3	125.8	1.975	83.4	45-115	106.9	0.00644	40	
Fluoranthene	120.8	6.3	125.8	3,951	92.9	40-135	125	3.41	40	
Fluorene	118.3	6,3	125.8	0	94	45-105	114	3.65	40	
indeno(1,2,3-cd)pyrer	ne 112	6.3	125.8	3.292	86.4	55-135	112.1	0.102	40	
Naphthalene	94.37	6.3	125.8	0	7 5	50-110	88.26	6.69	40	
Phenanthrene	98.14	6.3	125.8	1.646	76.7	55-125	103.7	5.53	40	
Pyrene	122.7	6.3	125.8	4.609	93.8	50-115	124.3	1.34	40	
Surr: 2-Fluorobiphe	enyi 209.5	0	314.6	0	66.6	12-100	222.3	5.91	40	
Surr: 4-Terphenyl-	290	0	314.6	0	92.2	25-137	284.1	2.06	40	
Surr: Nitrobenzene	-d5 239.7	0	314.6	0	76.2	37-107	248	3.42	40	

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Method	: SW8270M						
MSD S	ample ID: 13111249-05B MSD				Jnits:µg/k	(g	Analys	is Date: 11	/27/2013	05:54 PM
Client ID: \$\$-3	Run ID	: SVMS7	_131127A	Se	eqNo: 256 2	2105	Prep Date: 11/2	7/2013	DF: 10	
Analyte	Result	PQL	SPK V al	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	95.69	64	127.6	0	75	35-110	117.3	20.3	40	
Acenaphthylene	114.8	64	127.6	76.6	30	35-115	189.1	48.9	40	SR
Anthracene	108.4	64	127.6	19.98	69.3	45-125	143.4	27.8	40	
Benzo(a)anthracene	140.3	64	127.6	226.5	-67.5	50-105	365.1	88.9	40	SR
Benzo(a)pyrene	153.1	64	127.6	273.1	-94	40-135	404.2	90.1	40	SR
Benzo(b)fluoranthene	159.5	64	127,6	496.2	-264	55-120	482.4	101	40	SR
Benzo(b-k)fluoranthene	287.1	130	255.2	496.2	-82	55-120	749.7	89.2	40	SR
Benzo(g,h,i)perylene	146.7	64	127.6	246.4	-78.2	55-115	391,2	90.9	40	SR
Benzo(k)fluoranthene	127.6	64	127.6	143.2	-12.2	55-120	267.3	70.8	40	SR
Chrysene	140.3	64	127.6	216.5	-59.7	55-120	358.6	87.5	40	SR
Dibenzo(a,h)anthracene	121.2	64	127.6	53.28	53.2	45-115	189.1	43.7	40	R
Fluoranthene	146.7	64	127.6	286.4	-109	40-135	502	110	40	SR
Fluorene	108.4	64	127.6	3.33	82.4	45-105	117.3	7.88	40	
Indeno(1,2.3-cd)pyrene	140.3	64	127.6	186.5	-36.2	55-135	312.9	76.2	40	SR
Naphthalene	102.1	64	127.6	3.33	77.4	50-110	97.79	4.28	40	
Phenanthrene	102.1	64	127.6	36.63	51.3	55-125	189.1	59.8	40	SR
Pyrene	153.1	64	127.6	369.7	-170	50-115	573.7	116	40	SR
Surr: 2-Fluorobipheny	/ 261.5	0	319	0	82	12-100	208.6	22.5	40	
Surr: 4-Terphenyl-d1-	4 287.1	0	319	0	90	25-137	332.5	14.7	40	
Surr: Nitrobenzene-d	5 223.3	0	319	0	70	37-107	208.6	6.79	40	
~1 f . 11	and in this betake	42	111240 015	1211	1240 A2B	12	111240 030			

The following samples were analyzed in this batch:

13111249-01B	13111249-02B	13111249-03B	
13111249-04B	13111249-05B	13111249-06B	į

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53708	Instrument ID SVMS7		Metho	d: SW827	ОМ					
MBLK Sai	mple ID: SBLKW1-53708-5370)8			Units: µg/	L	Analy	sis Date: 1	1/27/2013	08:06 PM
Client ID:	Run II	: SVMS7	_131127A		SeqNo:256	1249	Prep Date: 11.	/27/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	ND	0.060								
Acenaphthylene	ND	0.080				•				
Anthracene	ND	0.060								
Benzo(a)anthracene	ND	0.040								
Benzo(a)pyrene	ND	0.080								
Benzo(b)fluoranthene	ND	0.090								
Benzo(b-k)fluoranthene	ND	0.11								
Benzo(g,h,i)perylene	ND	0.080								
Benzo(k)fluoranthene	ND	0.050								
Chrysene	ND	0.050								
Dibenzo(a,h)anthracene	ND	0.080								
Fluoranthene	ND	0.070								
Fluorene	ND	0.050								
Indeno(1,2,3-cd)pyrene	ND	0.070								
Naphthalene	ND	0.070								
Phenanthrene	ND	0.080								
Pyrene	ND	0.050								
Surr: 2-Fluorobiphenyl	2.44	0	5		0 48.8	10-112		0		
Surr: 4-Terphenyl-d14	3.97	0	5		0 79.4	10-132		0		
Surr: Nitrobenzene-d5	2,55	0	5		0 51	15-110		0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: 53708	Instrument ID SVMS7		Method	: SW827	OM						
LCS S	Sample ID: SLCSW1-53708-5370)8			ι	Jnits: µg/L		Analys	is Date: 1	1/27/2013	12:57 PM
Client ID:	Run ((o: SVMS7	_131127A		Se	qNo: 256 1	245	Prep Date: 11/2	2 7/20 13	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	1.45	0.060	2		0	72.5	45-110	0			
Acenaphthylene	1.17	0.080	2		0	58.5	50-105	0			
Anthracene	1.35	0.060	2		0	67.5	55-110	0			
Benzo(a)anthracene	1.38	0.040	2		0	69	55-110	0			
Benzo(a)pyrene	1.4	0.080	2		0	70	55-110	0			
Benzo(b)fluoranthene	1.46	0.090	2		0	73	45-120	0			
Benzo(b-k)fluoranthen	e 2.93	0.11	4		0	73.2	45-120	0			
Benzo(g,h,i)perylene	1.67	0.080	2		0	83.5	40-125	0			
Benzo(k)fluoranthene	1.47	0.050	2		0	73.5	45-120	0			
Chrysene	1.52	0.050	2		0	76	55-110	0	ı		
Dibenzo(a,h)anthracer	ne 1.46	0.080	2		0	73	40-125	0	<u> </u>		
Fluoranthene	1.38	0.070	2		0	69	55-115	0	ı		
Fluorene	1,52	0.050	2		0	76	50-110	C	l		
indeno(1,2,3-cd)pyreno	e 1.45	0.070	2		0	72.5	45-125	C	ı		
Naphthalene	1.09	0.070	2		0	54.5	40-100	C			
Phenanthrene	1.25	0.080	2		0	62.5	50-115	C	•		
Pyrene	1.61	0.050	2		0	80.5	50-130	<u>C</u>			
Surr: 2-Fluorobiphei	nyl 2.47	0	5		0	49.4	10-112	C)		
Surr: 4-Terphenyl-d	14 4.03	0	5		0	80.6	10-132	C)		
Surr: Nitrobenzene-	d5 2.73	0	5		0	54.6	15-110	()		

Triad Engineering, Inc.

Work Order:

Surr: 4-Terphenyl-d14

Surr: Nitrobenzene-d5

13111249

Project:	Johns Manville-Riverside Pa	arcels									
Batch ID: 53708	Instrument ID SVMS7		Method	: SW827	OM						
MS	Sample ID: 13111249-07B MS	i			l	Jnits:µg/L		Analysis	Date: 1	1/27/2013	02:03 PM
Client ID: TMW-2	Rui	n ID: SVMS7	_131127A		Se	qNo:2561	246	Prep Date: 11/27	/2013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	1.37	0.060	2		0	68.5	45-110	0			
Acenaphthylene	1.22	0.080	2		0	61	50-105	0			
Anthracene	1.32	0.060	2		0	66	55-110	0			
Benzo(a)anthracene	1.36	0.040	2		0	68	55-110	0			
Benzo(a)pyrene	1.44	0.080	2		0	72	55-110	0			
Benzo(b)fluoranthene	1,51	0.090	2		0	75.5	45-120	0			
Benzo(b-k)fluoranthe	ne 2.93	0.11	4		0	73.2	45-120	0			
Benzo(g,h,i)perylene	1.71	0.080	2		0	85.5	40-125	0			
Benzo(k)fluoranthene	1.42	0.050	2		0	71	45-120	0			
Chrysene	1.44	0.050	2		0	72	55-110	0			
Dibenzo(a,h)anthrace	ene 1,47	0.080	2		0	73.5	40-125	0			
Fluoranthene	1.4	0.070	2		0	70	55-115	0			
Fluorene	1.5	0.050	2		0	75	50-110	0			
Indeno(1,2,3-cd)pyre	ne 1,48	0.070	2		0	74	45-125	0			
Naphthalene	1.15	0.070	2		0	57 <i>.</i> 5	40-100	0			
Phenanthrene	1.23	0.080	2		0	61.5	50-115	0			
Pyrene	1.6	0.050	2		0	80	50-130	0			
Surr: 2-Fluorobiphe	enyl 2.6	0	5		0	52	10-112	0			

3.99

2.79

0

5

0

79.8

55.8

10-132

15-110

QC BATCH REPORT

0

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53708	instrument ID SVMS7		Metho	i: SW82 7	OM						*****
MSD Sar	mple ID: 13111249-07B MSD				ι	Jnits: µg/L	-	Analysi	is Date: 11	1/27/2013	02:36 PM
Client ID: TMW-2	Run II	D: SVMS7	_131127A		Se	eqNo:256	1247	Prep Date: 11/2	7/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	1.28	0.060	2		0	64	4 5- 1 10	1.37	6.79	40	
Acenaphthylene	1.09	0.080	2		0	54.5	50-105	1.22	11.3	40	
Anthracene	1.25	0.060	2		0	62.5	55-110	1.32	5. 4 5	40	
Benzo(a)anthracene	1.24	0.040	2		0	62	55-110	1.36	9.23	40	
Benzo(a)pyrene	1.29	0.080	2		0	64.5	55-110	1.44	11	40	
Benzo(b)fluoranthene	1.36	0.090	2		0	68	45-120	1.51	10.5	40	, , , , , , , , , , , , , , , , , , ,
Benzo(b-k)fluoranthene	2.63	0.11	4		0	65.8	45-120	2.93	10.8	40	
Benzo(g,h,i)perylene	1.5	0.080	2		0	7 5	40-125	1.71	13.1	40	
Benzo(k)fluoranthene	1.27	0.050	2		0	63.5	45-120	1.42	11.2	40	
Chrysene	1.31	0.050	2		0	65.5	55-110	1.44	9.45	40	
Dibenzo(a,h)anthracene	1.32	0.080	2		0	66	40-125	1.47	10.8	40	
Fluoranthene	1.27	0.070	2		0	63.5	55-115	1.4	9.74	40	
Fluorene	1.44	0.050	2		0	72	50-110	1.5	4.08	40	
Indeno(1,2,3-cd)pyrene	1.32	0.070	2		0	66	45-125	1.48	11.4	40	
Naphthalene	1.04	0.070	2		0	52	40-100	1.15	10	40	
Phenanthrene	1.16	0.080	2		0	58	50-115	1.23	5.86	40	
Pyrene	1.39	0.050	2		0	69.5	50-130	1.6	14	40	
Surr: 2-Fluorobiphenyl	2.35	0	5		0	47	10-112	2.6	10.1	40	
Surr: 4-Terphenyl-d14	3.47	0	5		0	69.4	10-132	3.99	13.9	40	
Surr: Nitrobenzene-d5	2.5	0	5		0	50	15-110	2.79	11	40	

The following samples were analyzed in this batch:

13111249-07B 13111249-08B 13111249-09B

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: 53716	nstrument ID VMS5		Method	d: SW826	1015					
MBLK Sample	e ID: MBLK-53716-53716				Units: µg/K	ίg	Analy	sis Date: 1	1/27/2013	04:23 PN
Client ID:	Run ID	: VMS5_	131127A		SeqNo:2559	1191	Prep Date: 11/	19/2013	DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	ND	30								
1,1,2,2-Tetrachioroethane	ND	30								
1,1,2-Trichloroethane	ND	30								
1,1-Dichloroethane	ND	30		**						
1,1-Dichloroethene	ND	30								
1,2-Dichloroethane	ND	30								
1,2-Dichloropropane	ND	30								
2-Butanone	ND	200								
2-Hexanone	ND	30								
4-Methyl-2-pentanone	ND	30						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Acetone	ND	100								
Benzene	ND	30								
Bromodichloromethane	ND	30								
Bromoform	ND	30								
Bromomethane	ND	75								
Carbon disulfide	ND	30								
Carbon tetrachloride	ND	30								
Chlorobenzene	ND	30								
Chloroethane	ND	100								
Chloroform	ND	30								
Chloromethane	ND	100								
cis-1,2-Dichloroethene	ND	30								
cis-1,3-Dichloropropene	ND	30								
Dibromochloromethane	ND	30		**			-			
Ethylbenzene	ND	30								
m,p-Xylene	ND	60								
Methylene chloride	ND	30								
o-Xylene	ND	30								
Styrene	ND	30								
Tetrachloroethene	ND	30								
	ND	30								
Toluene	ND	30							·	
trans-1,2-Dichloroethene	ND	30								
trans-1,3-Dichloropropene Trichloroethene	ND ND	30								
	ND	30								
Vinyl chloride	ND	60								
1,2-Dichloroethene, Total	ND ND	60								
1,3-Dichloropropene, Total	ND ND	90					_			
Xylenes, Total			4000		n ne 4	70-130		0		
Surr: 1,2-Dichloroethane-c		0	1000		0 98.4 0 97.3			0		
Surr: 4-Bromofluorobenze		0	1000			70-130				
Surr: Dibromofluorometha	· · · · · · · · · · · · · · · · · · ·	0	1000		0 99.4	70-130		0		
Surr: Toluene-d8	992	0	1000		0 99.2	70-130		U		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53716	Instrument ID VMS5		Method	d: SW 8 26	0B						
LCS Sar	mple ID: LCS-53716-53716				U	Jnits: µg/H	 (g	Analys	is Date: 1	1/27/2013	02:45 PN
Client ID:	Run IE	: VMS5_	131127A		Se	qNo:2559	189	Prep Date: 11/1	9/2013	DF: 1	
 Апаlyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
									<u> </u>		
1,1,1-Trichloroethane	1093	30	1000		0	109	70-135	0			
1,1,2,2-Tetrachioroethane		30	1000		0	119	55-130	0			
1,1,2-Trichloroethane	1156	30	1000		0	116	60-125	0			
1,1-Dichloroethane	1098	30	1000		0	110	75-125	0			
1,1-Dichloroethene	1116	30	1000		0	112	65-135	0			
1,2-Dichloroethane	1070	30	1000		0	107	70-135	0			
1,2-Dichloropropane	1106	30	1000		0	111	70-120	0			
2-Butanone	1184	200	1000		0	118	30-160	0			
2-Hexanone	1149	30	1000		0	115	45-145	0			
4-Methyl-2-pentanone	1485	30	1000		0	148	45-145	0			S
Acetone	1236	100	1000		0	124	20-160	0			
Benzene	1091	30	1000		0	109	75-125	0			
Bromodichloromethane	1096	30	1000		0	110	70-130	0			
Bromoform	1072	30	1000		0	107	55-135	0			
Bromomethane	766	7 5	1000		0	76.6	30-160	0			
Carbon disulfide	1099	30	1000		0	110	45-160	0			
Carbon tetrachloride	950.5	30	1000		0	95	65-135	0			
Chlorobenzene	1102	30	1000		0	110	75-125	0			
Chioroethane	1006	100	1000		0	101	40-155	0			
Chioroform	1094	30	1000		0	109	70-125	0			
Chloromethane	932	100	1000		0	93.2	50-130	0			
cis-1,2-Dichloroethene	1098	30	1000		0	110	65-125	0			
cis-1,3-Dichloropropene	1186	30	1000		0	119	70-125	0			
Dibromochloromethane	963.5	30	1000		0	96.4	65-135	0			
Ethylbenzene	1118	30	1000		0	112	75-125	0			
m,p-Xylene	2150	60	2000		0	107	80-125	0			
Methylene chloride	1102	30	1000		0	110	55-145	0			
o-Xylene	1138	30	1000		0	114	75-125	0			
Styrene	1176	30	1000		0	118	75-125	0			
Tetrachioroethene	1126	30	1000		0	113	64-140	0			
Toluene	1113	30	1000		0	111	70-125	0			
trans-1,2-Dichloroethene	1099	30	1000		0	110	65-135	0			
trans-1,3-Dichloropropene	1066	30	1000		0	107	65-125	О			
Trichloroethene	1122	30	1000		0	112	75-125	0			
Vinyl chloride	7 91	30	1000		0	79.1	60-125	0			
Xylenes, Total	3288	90	3000		0	110	75-125	0			
Surr: 1,2-Dichloroethan		0	1000		0	98.5	70-130	0			
Surr: 4-Bromofluoroben		0	1000	V. VIII. 4. 1977/W. 111111 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0	98.8	70-130	0			
Surr: Dibromofluoromet		0	1000		0	99.2	70-130	0			
Surr: Toluene-d8	1012	0	1000		0	101	70-130	0			

Triad Engineering, Inc.

Work Order:

13111249

Project: Johns Manville-Riverside Parcels Batch ID: 53716 Instrument ID VMS5 Method: SW8260B Units: µg/Kg Analysis Date: 11/30/2013 08:08 AM MS Sample ID: 13111249-05A MS SeqNo:2561411 Client ID: SS-3 Run ID: VMS8_131129B Prep Date: 11/19/2013 DF: 1 RPD SPK Ref Control RPD Ref Value Limit Value Limit SPK Val %REC %RPD Qual Analyte Result **PQL** 985.5 0 70-135 0 1,1,1-Trichloroethane 30 1000 98.6 905 1000 0 90.5 55-130 0 30 1.1.2.2-Tetrachloroethane 968 1,1,2-Trichloroethane 30 1000 0 96.8 60-125 0 1,1-Dichtoroethane 964.5 30 1000 0 96.4 75-125 0 922.5 1,1-Dichloroethene 30 1000 0 92,2 65-135 0 1014 0 30 1000 0 101 70-135 1,2-Dichloroethane 934 1,2-Dichloropropane 30 1000 0 93.4 70-120 0 827 0 0 2-Butanone 200 1000 82.7 30-160 890.5 30 0 0 2-Hexanone 1000 89 45-145 1235 0 0 30 4-Methyl-2-pentanone 1000 124 45-145 995.5 100 1000 0 99.6 20-160 0 Acetone 923.5 0 Benzene 30 1000 92.4 75-125 0 973 30 0 97.3 70-130 0 Bromodichloromethane 1000 824.5 0 Bromoform 30 1000 0 82.4 55-135 966 75 0 30-160 0 Bromomethane 1000 96.6 1018 1000 0 0 30 102 45-160 Carbon disulfide 940 0 Carbon tetrachloride 30 1000 0 94 65-135 977 30 0 75-125 0 Chlorobenzene 1000 97.7 890.5 Chloroethane 100 1000 0 89 40-155 0 Chioroform 1014 0 30 1000 0 101 70-125 789 50-130 Chloromethane 100 1000 0 78.9 0 cis-1,2-Dichloroethene 930.5 30 1000 0 93 65-125 0 cis-1,3-Dichloropropene 921 30 1000 0 92.1 70-125 0 944.5 30 1000 0 0 Dibromochloromethane 94,4 65-135 967 Ethylbenzene 30 1000 0 96.7 75-125 0 1944 0 0 m,p-Xylene 60 2000 97.2 80-125 921.5 30 0 0 Methylene chloride 1000 92.2 55-145 1026 30 0 0 o-Xylene 1000 103 75-125 1000 30 1000 0 0 Styrene 100 75-125 999.5 30 1000 0 64-140 0 Tetrachioroethene 100 976 30 0 0 Toluene 1000 97.6 70-125 1008 trans-1,2-Dichloroethene 30 1000 0 101 65-135 0 929 trans-1,3-Dichloropropene 30 1000 0 92.9 65-125 0 931 1000 Trichloroethene 30 0 0 93.1 75-125 718 0 0 Vinyl chloride 30 1000 71.8 60-125 Xylenes, Total 2970 90 3000 0 75-125 0 99 1039 Surr: 1.2-Dichloroethane-d4 0 1000 0 104 70-130 0 1008 0 Surr: 4-Bromofluorobenzene 0 1000 0 101 70-130

Surr: Dibromofluoromethane

Surr: Toluene-d8

1023

1002

0

0

1000

1000

0

0

102

100

70-130

70-130

0

0

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

									-		
MSD Sample	ID: 13111249-05A MSD				U	Inits: µg/K	(g	Analys	is Date: 11	/30/2013	08:33 A
Cilent ID: SS-3	Run ID	: VMS8_	131129B		Se	qNo:2561	1412	Prep Date: 11/1	9/2013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	956.5	30	1000		0	95.6	70-135	985.5	2.99	30	
1,1,2,2-Tetrachioroethane	884.5	30	1000		0	88.4	55-130	905	2.29	30	
1,1,2-Trichloroethane	912	30	1000		0	91.2	60-125	968	5.96	30	
1.1-Dichloroethane	946	30	1000		0	94.6	75-125	964.5	1.94	30	
1,1-Dichioroethene	931	30	1000		0	93.1	65-135	922.5	0.917	30	
1,2-Dichloroethane	960	30	1000		0	96	70-135	1014	5,42	30	
1,2-Dichloropropane	898.5	30	1000		0	89.8	70-120	934	3.87	30	
2-Butanone	802	200	1000		0	80.2	30-160	827	3.07	30	
2-Hexanone	857	30	1000		0	85.7	45-145	890.5	3.83	30	
4-Methyl-2-pentanone	1179	30	1000		0	118	45-145	1235	4.64	30	
Acetone	1033	100	1000		0	103	20-160	995.5	3.7	30	
Benzene	910.5	30	1000		0	91	75-125	923.5	1.42	30	
Bromodichloromethane	945	30	1000		0	94.5	70-120	923.3	2.92	30	
Bromoform	770.5	30	1000		0	77	55-135	824.5	6.77	30	
Bromomethane	941	7 5	1000		0	94.1	30-160	966	2.62	30	
Carbon disulfide	996.5	30	1000		0	99.6	45-160	1018	2.02	30	
	905.5	30	1000		0	90.6		940	3.74		
Carbon tetrachloride Chlorobenzene	953				0		65-135 75-125	-	2.49	30	
Chloroethane	804.5	30 100	1000 1000		0	95.3 80.4		977			
Chloroform	1010				0		40-155	890.5	10.1	30	
	790.5	30 100	1000 1000		0	101	70-125	1014	0.346	30	
Chloromethane	940.5				0	79	50-130 65-125	789	0.19	30	
cis-1,2-Dichloroethene	940.5	30	1000			94		930.5	1.07	30	
cis-1,3-Dichloropropene	903.5	30	1000		0	90.4	70-125	921	1.92	30	
Dibromochłoromethane		30	1000		0	91	65-135	944.5	3.67	30	
Ethylbenzene	936.5 1926	30	1000		0	93.6	75-125	967	3.2	30	
m,p-Xylene		60	2000		0	96.3	80-125	1944	0.956	30	
Methylene chloride	931.5	30	1000		0	93.2	55-145	921.5	1.08	30	
o-Xylene	989	30	1000		0	98.9	75-125	1026	3.62	30	
Styrene	989.5	30	1000		0	99	75-125	1000	1.11	30	
Tetrachloroethene	941	30	1000		0	94.1	64-140	999.5	6.03	30	
Toluene	935	30	1000		0	93.5	70-125	976	4.29	30	
trans-1,2-Dichloroethene	968	30	1000		0	96.8	65-135	1008	4	30	
trans-1,3-Dichloropropene	902	30	1000		0	90.2	65-125	929	2.95	30	
Trichloroethene	888	30	1000		0	88.8	75-125	931	4.73	30	
Vinyl chloride	727.5	30	1000		0	72.8	60-125	718	1.31	30	
Xylenes, Total	2914	90	3000		0	97.2	75-125	2970	1.87	30	
Surr: 1,2-Dichloroethane-de		0	1000		0	99.9	70-130	1039	3.93	30	
Surr: 4-Bromofluorobenzen		0	1000		0	102	70-130	1008	0.888	30	
Surr: Dibromofluoromethan		0	1000		0	98.8	70-130	1023	3.43	30	
Surr: Toluene-d8 The following samples were	analyzed in this batch:	13	1000 111249-01	A 13	0	101 249-02A	70-130 131	1002 11249-03A	0.696	30	

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53717	Instrument ID VMS5		Metho	d: SW82 6	i0B					
MBLK Samp	ole ID: MBLK-53717-53717				Units: µg/ł	√g	Analy	sis Date: 1	1/27/2013	04:47 PN
Client ID:	Run ID	: VMS5_	131127A		SeqNo: 255	9192	Prep Date: 11,	19/2013	DF: 1	
				CDK Def						
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	ND	30								
1,1,2,2-Tetrachloroethane	ND	30			***					
1,1,2-Trichloroethane	ND	30								
1,1-Dichloroethane	ND	30								
1,1-Dichtoroethene	ND	30								
1,2-Dichloroethane	ND	30								
1.2-Dichloropropane	ND	30								
2-Butanone	ND	200								
2-Hexanone	ND	30								
4-Methyl-2-pentanone	· ND	30								
Acetone	ND	100								
Benzene	ND	30								
Bromodichloromethane	ND	30								
Bromoform	ND	30								
Bromomethane	ND	75								
Carbon disulfide	ND	30								
Carbon tetrachloride	ND	30								
Chlorobenzene	ND	30								
Chloroethane	ND	100								
Chloroform	ND	30								
Chloromethane	ND	100								
cis-1,2-Dichloroethene	ND	30								
cis-1,3-Dichloropropene	ND	30								
Dibromochloromethane	ND					***************************************				
Ethylbenzene	ND	30								
m,p-Xylene	ND	30 60								
	ND									
Methylene chloride	ND ND	30			·					
o-Xylene	ND ND	30								
Styrene		30								
Tetrachloroethene	ND ND	30								
Toluene		30								
trans-1,2-Dichloroethene	ND ND	30								
trans-1,3-Dichloropropene	ND	30								
Trichloroethene	ND	30								
Vinyl chloride	ND ND	30								
1,2-Dichloroethene, Total	ND	60								
1,3-Dichloropropene, Total	ND	60								
Xylenes, Total	ND	90								
Surr: 1,2-Dichloroethane-		0	1000		0 99.3	70-130	(
Surr: 4-Bromofluorobenze	•	0	1000		0 97	70-130	()		
Surr: Dibromofluorometha		0	1000		0 98.8	70-130	()		
Sum: Toluene-d8	9 93	0	1000		0 99.3	70-130	()		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53717	Instrument ID VMS5		Metho	d: SW826	0B						
ILCS Samp	le ID: LCS-53717-53717				Ų	inits:µg/K	9	Analysis	Date: 1	1/27/2013	03:10 PN
Client ID:	Run ID	: VM\$5_	131127A		Se	qNo: 255 9	190	Prep Date: 11/19	9/2013	DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	1072	30	1000		0	107	70-135	0			
1,1,2,2-Tetrachloroethane	1141	30	1000		0	114	55-130	0			
1,1,2-Trichloroethane	1134	30	1000		0	113	60-125	0			
1,1-Dichloroethane	1050	30	1000		0	105	75-125	0			
1,1-Dichloroethene	1062	30	1000		0	106	65-135	0			
1.2-Dichloroethane	1049	30	1000		0	105	70-135	0			
1,2-Dichloropropane	1082	30	100 0		0	108	70-120	0			
2-Butanone	1094	200	1000		C	109	30-160	0			
2-Hexanone	1108	30	1000		0	111	45-145	0			
4-Methyl-2-pentanone	1419	30	1000		0	142	45-145	0			
Acetone	1115	100	1000		0	112	20-160	D			
Benzene	1072	30	1000		0	107	75-125	0			
Bromodichloromethane	1078	30	1000		0	108	70-130	0			
Bromoform	1053	30	1000		0	105	55-135	0			
Bromomethane	775.5	75	1000		0	77.6	30-160	0			
Carbon disulfide	1041	30	1000		0	104	45-160	0			
Carbon tetrachioride	951	30	1000		0	95.1	65-135	0			
Chlorobenzene	1084	30	1000		0	108	75-125	0	VM-0-1		
Chioroethane	1013	100	1000		0	101	40-155	0			
Chloroform	1064	30	1000		0	106	70-125	0			
Chloromethane	856.5	100	1000		0	85.6	50-130	0			
cis-1,2-Dichloroethene	1070	30	1000		0	107	65-125	0			
cis-1,3-Dichloropropene	1163	30	1000		0	116	70-125	0			
Dibromochloromethane	959.5	30	1000		0	96	65-135	0			
Ethylbenzene	1115	30	1000		0	112	75-125	0			
m,p-Xylene	2136	60	2000		0	107	80-125	0			
Methylene chloride	1059	30	1000		0	106	55-145	0			
o-Xylene	1129	30	1000		0	113	75-125	0			
Styrene	1160	30	1000		0	116	75-125	0			
Tetrachioroethene	1120	30	1000		0	112	64-140	0			
Toluene	1086	30	1000		0	109	70-125	0			
trans-1,2-Dichloroethene	1076	30	1000		0	108	65-135	0			
	1054	30	1000		0	105	65-125	0			
trans-1,3-Dichloropropene Trichloroethene	1094	30	1000		0	· 109	75-125	0			
Vinyl chloride	780.5	30	1000		0	78	60-125	0			
Xylenes, Total	3264	90	3000		0	109	75-125	0			
Surr: 1,2-Dichloroethane-		0	1000		0	98	70-130	0			
Surr: 4-Bromofluorobenze		0	1000		0	100	70-130	0			
Surr: 4-Bramanuoropenze Surr: Dibromofluoromethe		0	1000		0	99.6	70-130	0			
Surr: Toluene-d8	1014	0	1000		0	101	70-130				

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: 53717	instrument ID VMS5		ivieuiuc	1: SW826	- C					
MS Samp	ie ID: 13111249-06A MS				ι	Jnits: µg/K	ig .	Analysis Date	: 11/28/201	3 12:51 PM
Client ID: SB-14	Run II	D: VMS8_	131127B		Se	qNo: 255 9	187	Prep Date: 11/19/2013	DF: 1	
				SPK Ref			Control	RPD Ref	RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value %RP) Limit	Qual
1,1,1-Trichloroethane	967.5	30	1000		0	96.8	70-135	0		
1.1,2,2-Tetrachloroethane	883.5	30	1000		0	8 8.4	55-130	0		
1,1.2-Trichloroethane	975.5	30	1000		0	97.6	60-125	0		
1,1-Dichloroethane	980.5	30	1000		0	98	75-125	0		
1,1-Dichloroethene	993	30	1000		0	99.3	65-135	O		
1.2-Dichloroethane	1048	30	1000		0	105	70-135	0		
1.2-Dichloropropane	955.5	30	1000		0	95.6	70-120	Ů.		
2-Butanone	934	200	1000		0	93.4	30-160	0		
2-Hexanone	1019	30	1000		D	102	45-145	0		
4-Methyl-2-pentanone	1450	30	1000		0	145	45-145	O		S
Acetone	1112	100	1000		0	111	20-160	0		
Benzene	946.5	30	1000		0	94.6	75-125	0		
Bromodichloromethane	948.5	30	1000		0	94.8	70-130	0		
Bromoform	79 9	30	1000		0	79.9	55-135	0		
Bromomethane	79 9.5	7 5	1000		0	80	30-160	0		
Carbon disulfide	1049	30	1000		C	105	45-160	0		
Carbon tetrachloride	947	30	1000		0	94.7	65-135	0		
Chlorobenzene	973.5	30	1000		0	97.4	75-12 5	0		
Chloroethane	851	100	1000		0	8 5.1	40-155	0		
Chloroform	989.5	30	1000		0	9 9	70-125	0		
Chloromethane	811	100	1000		c	81.1	50-130	0	_w-	
cis-1,2-Dichloroethene	977	30	1000		0	97.7	65-125	0		
cis-1,3-Dichtoropropene	942.5	30	1000		0	94.2	70-125	0		
Dibromochloromethane	930	30	1000		0	93	65-135	Ú		
Ethylbenzene	982	30	1000		0	98.2	75-1 2 5	0		
m,p-Xylene	1950	60	2000		0	97.5	80-1 2 5	0		
Methylene chloride	996.5	30	1000		0	99.6	55-145	0		
o-Xylene	1012	30	1000		0	101	75-125	0		
Styrene	992.5	30	1000		0	99.2	75-125	0		
Tetrachloroethene	1000	30	1000		0	100	64-140	0		
Toluene	977	30	1000		0	97.7	70-125	0		
trans-1,2-Dichloroethene	1028	30	1000		0	103	65-135	0		
trans-1,3-Dichloropropene	962	30	1000		0	96.2	65-125	0		
Trichloroethene	944.5	30	1000		0	94.4	7 5-125	0		
Vinyl chloride	753.5	30	1000		0	75.4	60-125	0		
Xylenes, Total	2962	90	3000		0	98.7	75-125	0		
Surr: 1,2-Dichloroethane-	d4 1048	0	1000		0	105	70-130	0		
Surr: 4-Bromofluorobenze	ene 990.5	0	1000		0	99	70-130	0		
Surr: Dibromofluorometha	ane 987.5	0	1000		0	98.8	70-130	0		
Surr: Toluene-d8	1026	0	1000		0	103	70-130	0		

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

·	3111249-06A MSD					Jnits:µg/K	-	,	s Date: 11		01:16 PN
Client ID: SB-14	Run ID	: VMS8_	131127B		Se	qNo:2559	188	Prep Date: 11/1	9/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref V alue	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	971	30	1000		0	97.1	70-135	967.5	0.361	30	
1.1,2,2-Tetrachloroethane	994	30	1000		0	99.4	55-130	883.5	11.8	30	
1,1,2-Trichloroethane	993.5	30	1000		0	99.4	60-125	975.5	1.83	30	
1.1-Dichloroethane	974	30	1000		0	97.4	75-125	980.5	0.665	30	
1.1-Dichloroethene	1005	30	1000		0	100	65-135	993	1.2	30	
1.2-Dichloroethane	1034	30	1000		0	103	70-135	1048	1.25	30	
1.2-Dichloropropane	945	30	1000		0	94.5	70-120	955.5	1.1	30	
2-Butanone	980.5	200	1000		0	98	30-160	934	4.86	30	
2-Hexanone	1103	30	1000		0	110	45-145	1019	7.92	30	
4-Methyl-2-pentanone	1538	30	1000		0	154	45-145	1450	5.89	30	S
Acetone	1224	100	1000		0	122	20-160	1112	9.58	30	Ü
Benzene	949.5	30	1000		0	95	75-125	946.5	0.316	30	
Bromodichloromethane	944	30	1000		0	94.4	70-130	948.5	0.476	30	
Bromoform	868	30	1000		0	86.8	55-135	799	8.28	30	
Bromomethane	772	75	1000		0	77.2	30-160	799.5	3.5	30	
Carbon disulfide	929	30	1000		0	92.9	45-160	1049	12.1	30	
Carbon tetrachloride	925	30	1000		0	92.5	65-135	947	2.35	30	
Chlorobenzene	991	30	1000		0	99.1	75-125	973.5	1.78	30	
Chioroethane	69 6	100	1000		0	69.6	40-155	851	20	30	
Chioroform	980.5	30	1000		Û	98	70-125	989.5	0.914	30	
Chioromethane	828.5	100	1000		C	82.8	50-130	811	2.13	30	
cis-1,2-Dichtoroethene	971	30	1000		0	97.1	65-125	977	0.616	30	
cis-1,3-Dichtoropropene	925	30	1000		G	92.5	70-125	942.5	1.87	30	
Dibromochloromethane	960.5	30	1000		0	96	65-135	930	3.23	30	
Ethylbenzene	993.5	30	1000		0	99.4	75-125	982	1.16	30	
m,p-Xylene	1994	60	2000	a tarii und areaucini (reconsidur a decensi	0	99.7	80-125	1950	2.23	30	
Methylene chloride	992.5	30	100 0		0	99,2	55-145	996.5	0.402	30	
o-Xylene	1031	30	1000		0	103	75-125	1012	1.86	30	
Styrene	1032	30	1000		0	103	75-125	992.5	3.85	30	
Tetrachloroethene	1017	30	1000		0	102	64-140	1000	1.64	30	
Toluene	965.5	30	1000		0	96.6	70-125	977	1.18	30	
trans-1,2-Dichloroethene	980.5	30	1000		0	98	65-135	1028	4.78	30	
trans-1,3-Dichloropropene	958	30	1000		0	95.8	65-125	962	0.417	30	
Trichloroethene	900.5	. 30	1000		0	90	75-125	944.5	4.77	30	
Vinyl chloride	726.5	30	1000		0	72.6	60-125	753.5	3.65	30	
Xylenes, Total	3025	90	3000		0	101	75-125	2962	2,1	30	
Surr: 1.2-Dichloroethane-d4	1092	0	1000		0	109	70-130	1048	4.07	30	
Surr: 4-Bromofluorobenzene	999.5	0	1000		0	100	70-130	990.5	0.905	30	
Surr: Dibromofluoromethane	1032	0	1000		0	103	70-130	987.5	4.41	30	
Surr: Toluene-d8	1034	O	1000		0	103	70-130	1026	0.825	30	

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: R131534	Instrument ID VMS8		Metho	d: SW826	0					
MBLK Sam	ple ID: VBLKW2-131129-R	131534			Units: µg/L	-	Analy	vsis Date: 1	1/30/2013	12:03 PN
Client ID:	Run	ID: VMS8_	1311 29 B		SeqNo:256	1388	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	ND	1.0								
1,1.2,2-Tetrachloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1.2-Dichloroethane	ND	1.0								
1.2-Dichloropropane	ND	2.0								
2-Butanone	ND	5.0								
2-Нехапопе	ND	5.0								
4-Methyl-2-pentanone	ND	5.0								
Acetone	ND	20								
Benzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	1.0								
Carbon disulfide	ND	2.5								
Carbon tetrachioride	ND	1.0								
Chlorobenzene	ND	1.0			A A					
Chloroetnane	ND	1.0								
Chloroform	ND.	1.0			- Camer		37.10			
Chloromethane	ND	1.0								
cis-1,2-Dichloroethene	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
Dibromochloromethane	ND	1.0			LAVIEL T					
Ethylbenzene	ND	1.0								
m,p-Xylene	ND	2.0								
Methylene chloride	ND	5.0								
o-Xylene	ND	1.0								
Styrene	ND	1.0								
Tetrachloroethene	ND	2.0								
Toluene	ND	1.0								
trans-1,2-Dichloroethene	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
Trichloroethene	ND									
Vinyl chloride	ND	1.0								
1,2-Dichloroethene, Total	ND									
1,3-Dichloropropene, Total		2.0								
Xylenes, Total	ND						av			
Surr: 1,2-Dichloroethand			20		0 103	70-120		0		
Surr: 4-Bromofluoroben			20		0 97.5	75-120		0		• • •
Surr: Dibromofluoromet			20		0 99	85-115		0		
Surr: Toluene-d8	18.45		20		0 92.2	85-120		0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: R131534	nstrument ID VMS8		Method	: SW8260							
LCS Sample	e ID: VLCSW2-131129-R13	1534	·		Ün	its:µg/L	AN-	Analy	sis Date: 1	1/29/2013	10:51 PN
Client 1D:	Run ID	: VMS8_	131129B		Seql	No: 256 1	377	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1.1-Trichloroethane	20.6	1.0	20	0)	103	65-130	()		
1,1,2,2-Tetrachloroethane	20.57	1.0	20	0)	103	65-130	()		
1,1,2-Trichloroethane	23.47	1.0	20	C)	117	75-125	()		
1,1-Dichloroethane	20.63	1.0	20	C)	103	70-135	()		
1.1-Dichloroethene	17.37	1.0	20	C)	86.8	70-130	()		
1,2-Dichloroethane	21.85	1.0	20	C)	109	70-130	()		
1.2-Dichloropropane	17.87	2.0	20	C	0	89.4	75-125)		
2-Butanone	23.11	5.0	20	C)	116	30-150	()		
2-Hexanone	23.57	5.0	20	0	D	118	55-130		<u> </u>		
4-Methyl-2-pentanone	39.97	5.0	20	(0	200	60-135	1)		S
Acetone	20.67	20	20		0	10 3	40-140)		
Benzene	20.04	1.0	20	(0	100	80-120	()		
Bromodichloromethane	20.42	1.0	20	(0	102	75-120		<u></u>		
Bromoform	18.66	1.0	20	(0	93.3	70-130)		
Bromomethane	18.61	1.0	20	(0	93	30-145)		
Carbon disulfide	19.47	2.5	20	(0	97.4	35-165)		
Carbon tetrachioride	20.06	1.0	20	(0	100	65-140		J		
Chlorobenzene	19.64	1.0	20	(0	98.2	80-120)		
Chloroethane	18.21	1.0	20	(0	91	60-135	l	2		,
Chloroform	21,1€	1.0	20	(Ü	10 6	65-135	1	0		
Chloromethane	15.42	1.0	20	(0	77.1	70-125		0		
cis-1,2-Dichloroethene	20.89	1.0	20	(0	104	70-125		0		
cis-1,3-Dichloropropene	20.76	1.0	20	(0	104	70-130		0		
Dibromochloromethane	20.36	1.0	20	(0	102	60-135		0		
Ethylbenzene	19.35	1.0	20		0	96.8	75-125		0		
m,p-Xylene	39,38	2.0	40	(0	98.4	75-130		0		
Methylene chloride	21.49	5.0	20		0	107	55-140		0		
o-Xylene	20.33	1,0	20	(0	102	80-120		0		
Styrene	20.73	1.0	20		0	104	65-135		0		
Tetrachloroethene	21.79	2.0	20	(0	109	45-150		0		
Toluene	23.79	1.0	20		0	119	75-120		0		
trans-1,2-Dichloroethene	21.83	1.0	20	•	0	109	60-140		0		
trans-1,3-Dichloropropene	24.47	1.0	20		0	122	55-140		0		
Trichloroethene	16.74	1.0	2 0		0	83.7	70-125		0		
Vinyl chloride	14.13	1.0	20		0	70.6	50-145		0		
Xylenes, Total	59.71	3.0	60		0	99.5	75-130		0		
Surr: 1,2-Dichloroethane-	d4 22.74	0	20		0	114	70-120		0		
Surr: 4-Bromofluorobenze		0	20		0	102	75-120		0		
Surr: Dibromofluorometha		0	20		0	102	85-115		0		
Surr: Toluene-d8	24.41	0	20		0	122	85-120		0		S

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: R131534	Instrument ID VMS8		Method	l: SW826	0						
MS Samp	ole ID: 13111249-07A MS				l	Jnits:µg/L		Analy	sis Date: 1	1/30/2013	08:57 AN
Client ID: TMW-2	Run ID	: VMS8_	131129B		Se	qNo: 256 1	1384	Prep Date:		DF: 1	
Analyta	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	**************************************										
1,1,1-Trichloroethane	19.05	1.0	20		0	95.2	65-130)		
1,1,2,2-Tetrachloroethane	15.99	1.0	20		0	80	65-130)		
1,1,2-Trichioroethane	16.71	1.0	20	•••	0	83.6	75-125	- 401)		
1,1-Dichloroethane	18.04	1.0	20		0	90.2	70-135				
1,1-Dichloroethene	19.19	1.0	20		0	96	70-130		<u></u>		
1.2-Dichloroethane	17.43	1.0	20		0	87.2	70-130)		
1,2-Dichloropropane	16.9	2.0	20		0	84.5	75-125)		
2-Butanone	16.94	5.0	20		0	84.7	30-150)		
2-Hexanone	16	5.0	20		0	80	55-130	^	<u></u>		
4-Methyl-2-pentanone	21.78	5,0	20		0	109	60-135		0		
Acetone	22.45	20	20		0	112	40-140		2		
Benzene	17.71	1.0	20		0	88.6	80-120		0		
Bromodichloromethane	17.38	1.0	20		0	86.9	75-120		D		
Bromoform	13.83	1.0	20		0	69.2	70-130		0		S
Bromometnane	21.14	1.0	20		0	106	30-145		0		
Carbon disulfide	20.32	2.5	20		0	102	35-165		0		
Carbon tetrachloride	18.84	1.0	20		0	94.2	65-140		0		
Chlorobenzene	18.04	1.0	20		0	90.2	80-120		0		_
Chloroethane	27.75	1.0	20		0	139	60-135		0		S
Chloroform	18.84	1.0	20		0	94.2	65-135		0		
Chloromethane	16.33	1.0	20		0	81.6	70-125		0		
cis-1,2-Dichloroethene	17.8 3	1.0	20		0	89.2	70-12 5		C		
cis-1,3-Dichloropropens	16.86	1.0	20		0	84.3	70-130		0		
Dibromochloromethane	16.62	1.0	20		0	83.1	60-135		0		
Ethylbenzene	17.98	1.0	20		0	89.9	75-125		0		
m,p-Xylene	35.91	2.0	40		0	89.8	75-130		0		
Methylene chloride	17.49	5.0	20		0	87.4	55-140		0		
o-Xylene	18.34	1.0	20		0	91.7	80-120		0		
Styrene	18.04	1.0	20		0	90.2	65-135		0		
Tetrachloroethene	17.22	2.0	20		0	86.1	45-150		0		
Toluene	18.13	1.0	20		0	90.6	75-120		0		
trans-1,2-Dichloroethene	18.59	1.0	20		0	93	60-140		0		
trans-1,3-Dichloropropene	17.03	1.0	20		0	85.2	55-140		0		
Trichloroethene	17.26	1.0	20		0	86.3	70-125		0		
Vinyl chloride	15.95	1.0	20		0	79.8	50-145		0		
Xylenes, Total	54.25	3.0	60		0	90.4	75-130		0		
Surr: 1,2-Dichloroethane	e-d4 20.61	0	20		0	103	70-120		0		
Surr: 4-Bromofluorobenz	ene 20.09	0	20		0	100	75-120		0		
Surr: Dibromofluorometh	nane 19.99	0	20		0	100	85-115		0		
Surr: Toluene-d8	20.31	0	20		0	102	85-120	-	0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: R131534 Instrum	nent ID VMS8		Method	SW8260	···					
MSD Sample ID: 1	3111249-07A MSD				Units: µg/l		Analysi	s Date: 11	/30/2013	09:21 AN
Client ID: TMW-2	Run ID	VMS8_	1 311 2 9 B	8	eqNo:256	1385	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
 Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	18.93	1.0	20	0	94.6	65-130	19.05	0.632	30	
1.1.2.2-Tetrachioroethane	16.89	1.0	20	0	84,4	65-130	15.99	5.47	30	
1.1.2-Trichloroethane	17.13	1.0	20	0	85.6	75-125	16.71	2.48	30	
1.1-Dichloroethane	18.19	1.0	20	0	91	70-135	18.04	0.828	30	
1.1-Dichloroethene	18.34	1.0	20	0	91.7	70-130	19.19	4.53	30	
1,2-Dichloroethane	17.71	1.0	20	0	88.6	70-130	17.43	1.59	30	
1,2-Dichloropropane	16.62	2.0	20	0		75-126	16.9	1.67	30	
2-Butanone	18.18	5.0	20	0	90.9	30-150	16.94	7.06	30	
2-Hexanone	17.47	5.0	20	0		55-130	16	8.78	30	
4-Methyl-2-pentanone	24.4	5.0	20	0	122	60-135	21,78	11.3	30	w/
Acetone	23.8	20	20	0		40-140	22,45	5.84	30	
Benzene	17.39	1.0	20	0		80-120	17.71	1.82	30	
Bromodichloromethane	17.18	1.0	20	0	85.9	75-120	17.38	1.16	30	
Bromoform	14.74	1.0	20	0	73.7	70-130	13.83	6.37	30	
	22,96	1.0	20	0		30-145	21.14	8.25	30	
Bromomethane	20.59	2.5	20	0		35-165	20.32	1.32	30	
Carbon disulfide	18.69	1.0	20	0		65-140	18.84	0.799	30	
Carbon tetrachloride	17.71	1.0	20			80-120	18.04		30	
Chlorobenzene	22.2	1.0	20	(-		60-126	27.75	22.2	30	
Chloroethane	18.96	1.0	20	0		65-135	18.84	0.635	30	
Chloroform	17.08		20	0		70-125	16.33	4.49	30	
Chloromethane	18.03	1.0	20	0		70-125	17.83	1.12	30	
cis-1.2-Dichloroethene	16.45	1.0	20	0		70-120	16.86	2.46	30	
cis-1,3-Dichloropropene	17.25	1.0		0		60-135	16.62		30	
Dibromochloromethane		1.0	20				17.98	1.06	30	
Ethylbenzene	17.79 35.53	1.0	20	0		75-125 75-130	35.91	1.06	30	
m,p-Xylene		2.0	40						30	
Methylene chloride	17.27	5.0	20	0		55-140	17.49			
o-Xylene	18.08	1.0	20	0		80-120	18.34		30	
Styrene	17.75	1.0	20	0		65-135	18.04		30	
Tetrachloroethene	17.45	2.0	20	0		45-150	17.22		30	
Toluene	18.06	1.0	20	<u>C</u>		75-120	18.13		30	
trans-1,2-Dichloroethene	18.68	1.0	20	0		60-140	18.59		30	
trans-1,3-Dichloropropene	16.93	1.0	20	C		55-140	17.03		30	
Trichtoroethene	17.32	1.0	20	0		70-125			30	
Vinyl chloride	15.99	1.0	20			50-145			30	
Xylenes, Total	53.61	3.0	60	C		75-130				
Surr: 1,2-Dichloroethane-d4	20.73	0	20			70-120				
Surr: 4-Bromofluorobenzene	20.2	0	20	0		75-120				
Surr: Dibromofluoromethane	20.56	0	20			85-115	•			
Surr: Toluene-d8	20.47	0	20	С	102	85-120	20.31	0,785	30	
The following samples were ana	lyzed in this batch:	i	3111249-07 <i>/</i> 3111249-10 <i>/</i>		11249-08A	. 13	111249-09A			

Note:

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: R131552	Instrument ID VMS8		Metho	d: SW826	0		···-		· · · · · · · · · · · · · · · · · · ·	
MBLK Samp	le ID: VBLKW1-131202-R1	31552			Units:µg/L	•	Analy	sis Date: 1	2/2/2013 (01:01 PN
Client ID:	Run I	D: VMS8 _	131202A		SeqNo:256	2327	Prep Date:		DF: 1	
				ODK D-K	•				RPD	
Analyte	Result	PQL	SPK Vai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	Limit	Qual
1,1,1-Trichioroethane	ND	1.0								
1,1,2.2-Tetrachloroethane	ND	1.0			·····		~~~			
1,1,2-Trichloroethane	ND	1.0								
1,1-Dichloroethane	ND	1,0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloroethane	ND	1.0								
1,2-Dichtoropropane	ND	2.0								
2-Butanone	ND	5.0								
2-Hexanone	ND	5.0								
4-Methyl-2-pentanone	ND	5.0								
Acetone	ND	20								
Benzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0	,							
Bromomethane	ND	1.0								
Carbon disulfide	ND	2,5								
Carbon tetrachtoriae	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	1.0								
Chloroforn	ND	1.0	Marine, / production							
Chloromethane	ND	1.0								
cis-1,2-Dichioroethene	ND	1.0	r		.9447-4		•			
cis-1,3-Dichloropropene	ND	1.0								
Dibromochloromethane	ND	1.0						1,1,1,7		
Ethylbenzene	ND	1.0								
m,p-Xylene	ND	2.0		****			22			
Methylene chloride	ND	5.0								
o-Xylene	ND	1.0								
Styrene	ND	1.0								
Tetrachloroethene	ND	2.0								,
Toluene	ND	1.0								
trans-1,2-Dichloroethene	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
Trichloroethene	ND	1.0							***	
Vinyl chloride	ND	1.0								
1,2-Dichloroethene, Total	ND	2.0							•	
1,3-Dichloropropene, Total	ND	2.0								
Xylenes, Total	ND	3.0					*****			
Surr: 1,2-Dichloroethane-		0	20		0 102	70-120		0		
Surr: 4-Bromofluorobenze		0	20		0 98.8	75-120		0	•	
Surr: Dibromofiuorometha		0	20		0 98.6	85-115		0		
Sur: Toluene-d8	20.22	0	20		0 101	85-120		0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

ble ID: VLCSW1-131202-R13	1552									
.	1002			L	Jnits: µg/L		Апаіу	sis Date: 1	2/2/2013	11:24 AN
Run ID	: VMS8_	131202A		Se	qNo:2562	2324	Prep Date:		DF: 1	
Result	PQL.	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
						05.400				
										s
										5

	,,									
7.00.0	~		200							

	2.0									
20.5	1.0	20		0	102	75-120				
21,86	1.0	20		0	109	60-140				
	1.0	20		0	107	5 5-140				
19.43	1.0				97.2					
16.14	1.0	20		0						
63.43	3.0	60		0	106					
	0	20		0	102					-
	0	20		0	102					
nane 20.5	0	20		0	102	85-115				
,	20.96 19.77 20.06 20.96 20.96 20.2 20.22 19.13 17.89 19.04 27.05 20.6 19.76 20.12 18.14 26.06 23.18 21.17 20.34 21.54 21.76 17.59 21.32 20.71 20.57 20.5 42.19 20.32 21.24 21.54 21.54 21.54 21.54 21.54 20.71 20.57 20.5 42.19 20.32 21.24 21.54 20.12 20.5 42.19 20.32 21.24 21.54 20.12 20.5 21.86 21.41 19.43 16.14 63.43 20.5	20.96 1.0 19.77 1.0 20.06 1.0 20.96 1.0 20.96 1.0 20.2 1.0 20.22 1.0 19.13 2.0 17.89 5.0 19.04 5.0 27.05 5.0 20.6 20 19.76 1.0 20.12 1.0 18.14 1.0 26.06 1.0 23.18 2.5 21.17 1.0 20.34 1.0 21.54 1.0 21.54 1.0 21.54 1.0 21.76 1.0 21.32 1.0 21.76 1.0 21.32 1.0 21.32 1.0 21.32 1.0 21.32 1.0 21.34 1.0 21.54 1.0	20.96 1.0 20 19.77 1.0 20 20.06 1.0 20 20.96 1.0 20 20.2 1.0 20 20.22 1.0 20 19.13 2.0 20 19.04 5.0 20 20.6 20 20 20.6 20 20 20.6 20 20 19.76 1.0 20 20.12 1.0 20 21.17 1.0 20 23.18 2.5 20 21.17 1.0 20 21.54 1.0 20 21.54 1.0 20 21.55 1.0 20 20.5 1.0 20 20.5 1.0 20 20.5 1.0 20 20.12 2.0 20 21.24 1.0 20 21.32 2.0 20 21.32 2.0 20 21.34 1.0 20 21.54 1.0 20 21.54 1.0 20 21.55 1.0 20 21.55 1.0 20 20.5 1.0 20 20.5 1.0 20 21.54 1.0 20 21.54 1.0 20 21.55 1.0 20 21.54 1.0 20 21.55 1.0 20 21.54 1.0 20 21.55 1.0 20 21.54 1.0 20 21.55 1.0 20 21.64 1.0 20 21.76 1.0 20 21.86 1.0 20	20.96 1.0 20	20.96	20.96	20.96	20.96	20.96	20.96

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Batch ID: R131552	Instrument ID VMS8		Metho	d: SW826	0						
MS Sampl	le ID: 13111248-06A MS				L)nits:µg/L		Analy	sis Date: 1	2/2/2013	09:14 PM
Client ID:	Run 10	: VMS8_	131202A		Se	qNo:2562	2347	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	21.43	1.0	20		0	107	6 5-130	()		
1,1,2,2-Tetrachloroethane	19.7	1.0	20		0	98.5	65-130	()		
1,1,2-Trichloroethane	19.62	1.0	20		0	98.1	75-125	()		
1,1-Dichloroethane	20.16	1.0	20		0	101	70-135	C)		
1,1-Dichloroethene	20.21	1.0	20		0	101	70-130)		
1,2-Dichloroethane	19.94	1.0	20		0	99.7	70-130	()		
1.2-Dichloropropane	18.69	2.0	20		С	93.4	75-125)		
2-Butanone	16.77	5.0	20		0	83.8	30-150	()		
2-Hexanone	19.58	5.0	20		0	97.9	55-130	**)		
4-Methyl-2-pentanone	26.88	5.0	20		0	134	60-135	(
Acetone	17.15	20	20		0	85.8	40-140)		J
Benzene	20.05	1.0	20		0	100	80-120	(0		
Bromodichloromethane	19.9	1.0	20		0	99.5	75-120	()		
Bromoform	17.42	1.0	20		0	87.1	70-130	(3		
Bromomethane	16.03	1.0	20		0	80.2	30-145)		
Carbon disulfide	20.38	2.5	20		0	102	35-165	(2		
Carbon terrachloride	21.71	1.0	20		0	109	65-140	- 1	<u> </u>		
Chlorobenzene	20.44	1.0	20		0	102	80-120		0		
Chloroethane	17.04	1.0	20		0	85.2	6 0-135	1	0		
Chloroform	21.03	1.0	20		0	105	65-135		0		
Chloromethane	14.9	1.0	20		0	74.5	70-125		0		
cis-1,2-Dichloroethene	20.53	1.6	20		0	103	70-125		0		
cis-1,3-Dichloropropene	20.33	1.0	20		0	102	70-130		0		
Dibromochloromethane	19.89	1.0	20		0	99.4	60-135		0		
Ethylbenzene	20.98	1.0	20		0	105	75-125		0		
m,p-Xylene	41.78	2.0	40		0	104	75-130	1.00	0		
Methylene chioride	19.5	5.0	20		0	97.5	55-140		0		
o-Xylene	21.09	1.0	20		0	105	80-120		0		
Styrene	20.97	1.0	20		0	105	65-135		0		
Tetrachloroethene	19.68	2,0	20		0	98.4	45-150		0		
Toluene	20.41	1.0	20		0	102	75-120		0		
trans-1,2-Dichloroethene	20.57	1.0	20		0	103	60-140		0		
trans-1,3-Dichloropropene	20.59	1.0	20		0	103	55-140		0		
Trichloroethene	20.15	1.0	20		0	101	70-125		0		
Vinyl chioride	15.78	1.0	20		0	78.9	50-145		0		
Xylenes, Total	62.87	3.0	60		0	105	75-130		0		
Surr: 1,2-Dichloroethane-		0	20		0	102	70-120		0		
Surr: 4-Bromofluorobenze		0	20		0	103	75-120		0		
Surr: Dibromofluorometha		0	20		0	101	85-115		0		
Surr: Toluene-d8	20.18	0	20		0	101	85-120		0		

Client:

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: R131552	nstrument 1D VMS8		Metho	t: SW826	0						
MSD Sampl	e ID: 13111248-06A MSD				ι	Jnits: µg/L		Analysi	s Date: 12	/2/2013 0	9:38 PN
Client ID:	Run ID	: VMS8_	131202A		Se	qNo:2562	2350	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Quai
A16****	21.02	1.0	20		0	105	65-130	21.43	1.93	30	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	19.67	1.0	20	1117.07	0	98.4	65-130	19.7	0.152	30	
1,1,2.Z-Tetrachioroethane	19.4	1.0	20		0	97	75-125	19.62	1.13	30	
1,1-Dichloroethane	20	1.0	20		0	100	70-135	20.16	0.797	30	
1,1-Dichloroethene	20.86	1.0	20		0	104	70-130	20.21	3.17	30	
1.2-Dichloroethane	19.67	1.0	20		0	98.4	70-130	19.94	1.36	30	
·	18.97	2,0	20		0	94.8	75-125	18.69	1.49	30	
1,2-Dichloropropane 2-Butanone	18.53	5.0	20		0	92,6	30-150	16.77	9.97	30	
2-Butanone 2-Hexanone	20.09	5.0	20		0	100	55-130	19.58	2.57	30	
4-Methyl-2-pentanone	28.27	5.0	20		0	141	60-135	26.88	5.04	30	8
- '	20.49	20	20		0	102	40-140	17.15	17.7	30	
Acetone	19.71	1.0	20		0	98.6	80-120	20.05	1,71	30	
Benzene Benzene	19.64	1.0	20		0	98.2	75-120	19.9	1.32	30	
Bromodichloromethane	17.41	1.0	20		0	87	70-130	17.42	0.0574	30	
Bromoform	21.76		20		0	109	30-145	16.03	30.3	30	R
Bromomethane	20.25	1.0	20		0	101	35-165	20.38	0.64	30	
Carbon disulfide	20.23	2.5			0	105	65-140	20.38	3.32	30	
Carbon tetrachiorioe	20.01	1.0	20 20		0	100	80-120	20.44	2.13	35	
Chlorobenzene		1.0			0	94		17.04	9.87	3 6	
Chloroethane	18.81	1.0	20		0		60-135	21.03	0.524	30	
Chioroform	20.92	1.0	20			105	65-135		2.17	30	
Chloromethane	14.58	1.0	20		0	72.9	70-125 70-125	14.9 20.53	0.881	30	
cis-1.2-Dichloroethene	20.35	1.0	20		0	102			0.881	30	
cis-1.3-Dichloropropene	20.49	1.0	20	www	0	102	70-130	20.33			
Dibromochloromethane	19.52	1.0	20		0	97.6	60-135	19.89	1.88	30	
Ethylbenzene	20.22	1.0	20		0	101	75-125	20.98	3.69	30	
m,p-Xylene	40.31	2.0	40		0	101	75-130	41.78	3.58	30	
Methylene chloride	19.31	5.0	20		0	96.6	55-140	19.5	0.979	30	
o-Xylene	20.79	1.0	20		0	104	80-120	21.09	1.43	30	
Styrene	20.64	1.0	20		0	103	65-135	20.97	1.59	30	
Tetrachioroethene	18.96	2.0	20		0	94.8	45-150	19.68	3.73	30	
Toluene	20.3	1.0	20		0	102	75-120	20.41	0.54	30	
trans-1,2-Dichloroethene	21.08	1.0	20		0	105	60-140	20.57	2.45	30	
trans-1,3-Dichloropropene	20.56	1.0	20		0	103	55-140	20.59	0.146	30	
Trichtoroethene	19.89	1.0	20		0	99.4	70-125	20.15			
Vinyl chloride	15.59	1.0	20	*********	0	78	50-145	15.78		30	
Xylenes, Total	61.1	3.0	60		0	102	75-130	62.87	2.86		
Surr: 1,2-Dichloroethane-		0	20		0	99.8	70-120	20.35	1.94		
Surr: 4-Bromofluorobenze		0	20		0	101	75-120	20.51	1.08		
Surr: Dibromofluorometha		0	20		0	97.8	85-115	20.16			
Surr: Toluene-d8	20.32	0	20		0	102	85-120	20.18	0.691	30	

The following samples were analyzed in this batch:

Note:

13111249-09A

Triad Engineering, Inc.

Work Order:

13111249

Project:

Johns Manville-Riverside Parcels

Batch ID: R131395	Instrument ID MOIST		Method	d: A2540	G	14/4/17				
MBLK	Sample ID: WBLKS-R131395				Units: %	6 of sample	Analys	is Date: 11	/26/2013	03;00 PM
Client ID:	Run 1	D: MOIST	_131126E		SeqNo:2	558049	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.050								
DUP	Sample ID: 13111249-04C DUP				Units: %	6 of sample	Analys	is Date: 11	/26/2013	03:00 PM
Client ID: SB-1 FD	Run I	D: MOIST	_131126E		SeqNo:2	:558019	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RE	Control EC Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	16.2	0.050	0		0	0 0-0	15.85	2.18	20	
DUP	Sample ID: 13111254-21C DUP	·····	~~~		Units: %	% of sample	Analys	is Date: 1	1/26/2013	03:00 PM
Client ID:	Runi	D: MOIST	_1311 26 E		SeqNo:2	558024	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%RI	Control EC Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	18.85	0.050	0		С	0 0-0	19.57	3.7 5	2 0	
The following samp	ples were analyzed in this batch:		3111249-010 3111249-040		3111249-0 3111249-0		111249-03C 1111249-06C			

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262

Cháin of Custody Form

1	ŀ
of	
-	
Page	

L) ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185

Puritines Control Information Puritines Control Informatio					ALS Project Manager	Manager				ALS	ALS Work Order #:	der #:	?)	3111249		
Excitation of the part of th	Customer Information		Project	Informat	lon			P	arame	ter/Mei	hod Re	quest f	or Ana	ysis		
Second Registration of the Company Market Company Mar	Purchase Order 04-13-0402	Project Name	٦	nville-Rve	rside Parce	SIS		OC by 8	260							
Company (Note) That Bugginsering, Inc. Dispose Alta Dispose	Work Order	Project Number	0				::::	AH 8270	SIM							
Second Seporate Viriginal Provides Aftiti James Stromple D. RITA's liketale [Discolared field filtered) Discolared State Discolared Stat	Company Name Triad Engineering, Inc.	Bill To Company		neering, Ir	JC.			CRA 8 N	letais		,					
CopyStatestics Secution Devision CopyStatestics C	Send Report To Matthew Wright	hrvolce Attn		nple				CRA8 N	letals (I	Dissolve	d lield fil	tered)				
Principle Scott Dropol, WV 25560 City/Stote/Zip Storymoren, VV 25605 His Principle Scott Dropol, WV 25560 City/Stote/Zip Scott Dropol, WV 25605 Ci	Address Address	Address		ain Run Re			Ше					a de la constanta de la consta				
Princip 1004-756-0472 Princip 1014-1019-2525 Princip 1114-1019-2515 Princip Princip	City/State/Zip Scott Depot, WV 25560	City/State/Zip		vn, WV 26	505		Q									
Sample Description Date Sample Offittide Record Sample Offitti	Phone 304-755-0721	Phone		162												
Signification Date Trime Attains Print Pri	Fax 304-755-1880	Fav	304-296-87	39			-							-		
Sample Description Date Time Matrix Privately Privately A Priv	e-Mall Address myright@triadeng.com		jstemple@	triadeng.c	IIIOS											
SS-1 FD 11/19/2013 1530 soil 7.6.8 S x x x x x x x x x		Date	ille.		Pres. Key Numbers	# Bollles	٧	E	Ų	Ω		೨	Ξ			Holo
SS-1 FD 11/19/2013 1530 501 7.68 5 x x x x x x x x x	SS-1	11/19/2013	1530	soil	7,6,8	٦,	×	ж	×							
SB-1 FD 11/19/2013 1530 soil 7,68 15 x x x x x x x x x	SS-1	11/19/2013	1530	soil	7,6,8	10	×	×	×							
SB-1 FD		11/19/2013	1530	soil	8,9,7	5	×	×	×							
SS-3 with MS/MSD 11/20/2013 1020 soil 7.68 15	. :::	11/19/2013	1530	soil	7,6,8	10	×	×	×							
SB-14 with MS/MSD 11/20/2013 1020 soil 7,68 15 x x x x x x x x x	:::::	11/20/2013	0630	soil	7,6,8	15	×	×	×							
IMW-4 IMW-	. : : : :	11/20/2013	1020	soil	7,6,8	15	×	×	×				-			
IMW-4		11/21/2013	1015	waler.	1,2,8	18	X	×		X						
TWW-4FD	12.23	11/21/2013	1300	water	1,2,8	9	×	×		×						
	1000	11/21/2013	1300	water	1,2,8	12	×	×		×						
Prieses Print & Sign	10 TRIP SLIN	2,4			-					,						
11 12 13 15 15 15 15 15 15 15		Shipme	nt Method:	Regul	red Turnar 0.wk Days [ound Time: 5 WK Days	(Check □	3dx) Days) oller k Days] 24 Hour		sults Du	a Date:		
11 12 13 15 20	Mushed by:		ived by:	\	1	Date:	Time:	Notes:		-				2		
					1			3	İ	120ell.	3 100	کر د	7	\preccurlyeq	S	14,
201 2-HNO3 3-H2SO4 4-NaOH 5-Na ₂ S ₂ O3 6-NaHSO ₄ 7-Other 8-4°C	quishedray Date:	3/1:	lived by (Labor	atory): K	Ty-	54	Tinne: /54/6	ALS C		Cooler Temp	QC Paci	cage: (Cl II: Standar	heck Bo	x Balow Level III:	Raw Da	审
1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaHSO ₄ 7-Other 8-4°C		,	sked by (Labor	atory):						M		LRC IV: SW816	Methods/C	TRRP Levi	st I∨	
1-HC 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOrt 5-Na ₂ S ₂ O ₃ b-NaI1SO ₄ 1-Other 8-4 \odot	tahil and	3		3				- Cak: 9	Z	0 X0 V	Other:	and tema	de in wr	fino one	illes a	Sol
	1-HCI Z-HNC	50 ₄ 4 NaU		252U3	0-IValido			2-4-C	piiio	COC For	in bave b	cen subm	iffed to	\LS.	,	,

ALS Group USA, Corp

Sample Receipt Checklist

Client Name: TRIADENGINEER	1		Date/Time	Received: 22-	Nov-13	<u>15:46</u>	
Work Order: <u>13111249</u>			Received b	y: JA :	<u> </u>		
Checklist completed by sacret C	Smith	25-Nov-13 Date	Reviewed by:	Reviseea Kia eSignature	<u></u>		27-Nov-13 Date
Matrices: Soil and Water Carrier name: Courier							
Shipping container/cooler in good	condition?	Yes 🔽	No 🗔	Not Present			
Custody seals intact on shipping co	ontainer/cooler?	Yes 🗌	No 🗆	Not Present	V		
Custody seals intact on sample bo	ttles?	Yes 🗹	No 🗌	Not Present			
Chain of custody present?		Yes 🔽	No 🗔				
Chain of custody signed when relin	quished and received?	Yes 🔽	№ □				
Chain of custody agrees with samp	ole labels?	Yes 🔽	No 🗔				
Samples in proper container/bottle	?	Yes 🔽	No 🗔				
Sample containers intact?		Yes 🔽	No 🗆				
Sufficient sample volume for indica	nted test?	Yes 🔽	No 🗔				
All samples received within holding	į time?	Yes 🗹	No				
Container/Temp Blank temperature	e in compliance?	Yes 🔽	No 🗀				
Sample(s) received on ice? Temperature(s)/Thermometer(s):		Yes <u>▼</u> 3.0C	No	<u>IR</u>			
Cooler(s)/Kit(s):							
Date/Time sample(s) sent to stora	ge:	====	400	1,000	====		
Water - VOA vials have zero head	space?	Yes 🔽		No VOA vials su	omitted	<u>-</u>	
Water - pH acceptable upon recei	ot?	Yes 🔽					
pH adjusted? pH adjusted by:		Yes	No 🗹	N/A			
Login Notes: Received at A	LS Holland 11/26/13 10:45 Al	<u>М - 3.2 с</u>					
				···		·	
Client Contacted:	Date Contacted	d:	Person	Contacted:			
Contacted By:	Regarding:						
Comments:							
CorrectiveAction:			4.5			SRC F	Page 1 of 1

13-Dec-2013

Matthew Wright
Triad Engineering, Inc.
4980 Teays Valley Road
Scott Depot, WV 25560

Re: Johns Manville-Riverside Parcels

Work Order: 13111254

Dear Matthew,

ALS Environmental received 30 samples on 22-Nov-2013 03:46 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 110.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Lebecca Kiser

Electronically spproved by, Rebecca Kiser

Rebecca Kiser Project Manager THIS ACCURACY

Certificate No: MN 532786

Report of Laboratory Analysis

ALS Group USA, Corp

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Work Order:

13111254

Work Order Sample Summary

Lob Samu ID C	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received Hold
13111254-01 S	•	Soil	Tag Itumber		11/22/2013 15:46
	SS-4	Soil			11/22/2013 15:46
	SS-5	Soil			11/22/2013 15:46
	SS-6	Soil			11/22/2013 15:46
	3S-7	Soil			11/22/2013 15:46
	SS-8	Soil			11/22/2013 15:46
	SS-9	Soil			11/22/2013 15:46
	SS-10	Soil			11/22/2013 15:46
	SS-11	Soil			11/22/2013 15:46
	SS-12	Soil			11/22/2013 15:46
	SS-13	Soil		11/19/2013 11:00	11/22/2013 15:46
	SS-14	Soil			11/22/2013 15:46
	SS-15	Soil		11/20/2013 11:00	11/22/2013 15:46
	SS-16	Soil		11/20/2013 15:00	11/22/2013 15:46
•	SB-2	Soil		11/19/2013 13:00	11/22/2013 15:46
	SB-3	Soil		11/20/2013 09:30	11/22/2013 15:46
13111254-17 S	SB-4	Soil		11/19/2013 15:00	11/22/2013 15:46
13111254-18 S	SB-5	Soil		11/19/2013 14:00	11/22/2013 15:46
13111254-19 S	SB-6	Soil		11/20/2013 15:35	11/22/2013 15:46
[3111254-20 S	SB-7	Soil		11/19/2013 16:00	11/22/2013 15:46
13111254-21 S	SB-8	Soil		11/20/2013 14:00	11/22/2013 15:46
13111254-22 S	SB-9	Soil		11/20/2013 12:00	11/22/2013 15:46
13111254-23 S	SB-10	Soil		11/20/2013 14:30	11/22/2013 15:46
13111254-24 S	SB-11	Soil		11/19/2013 10:00	11/22/2013 15:46
13111254-25 S	SB-13	Soil		11/19/2013 11:00	11/22/2013 15:46
13111254-26 S	SB-15	Soil			11/22/2013 15:46
13111254-27 S	SB-16	Soil		11/20/2013 15:00	11/22/2013 15:46
13111254-28 T	ΓMW-1	Water		11/21/2013 09:45	11/22/2013 15:46 📙
13111254-29 T	Г М W -3	Water		11/21/2013 11:30	11/22/2013 15:46
13111254-30 T	Trip Blank	Water		11/21/2013	11/22/2013 15:46

ALS Group USA, Corp

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Work Order:

13111254

Case Narrative

The reporting limits for the following metals analysis are elevated due to dilution for high concentration of non-target analytes:13111254-01, B13111254-02B, 13111254-03B, 13111254-04B, 13111254-06B, 13111254-07B, 13111254-08B, 13111254-09B, 13111254-10B, 13111254-11B, 13111254-12B, 13111254-13B, 13111254-14, B13111254-15B 13111254-16B, 13111254-17B, 13111254-18B, 13111254-19B, 13111254-20B, 13111254-26B, 13111254-27B, 13111254-29C,

Batch 53716, Method VOC_8260_S, Sample LCS-53716: The LCS recovery was above the upper control limit. The sample results for this analyte may be biased high for this analyte: 1,2-Dibromoethane, 4-Methyl-2-pentanone, trans-1,4-Dichloro-2-butene

Batch 53717, Method VOC_8260_S, Sample LCS-53717: The LCS recovery was above the upper control limit. The sample results for this analyte may be biased high for this analyte: 1,2-Dibromoethane 4-Methyl-2-pentanone

Batch 53753, Method SVO_8270_SSIM, Sample 13111254-13B: Matrix spike and Spike Duplicate recovered outside of allowable limits due to matrix interference.

ALS Group USA, Corp

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

WorkOrder:

13111254

QUALIFIERS, ACRONYMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
а	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
,ì	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
О	Sample amount is > 4 times amount spiked
Þ	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Acronym	Description
DUF	Method Dupitcate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
Α	APHA Standard Methods
D	ASTM
E	EPA
sw	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
μg/Kg-dry	Micrograms per Kilogram Dry Weight
μg/L	Micrograms per Liter
mg/Kg-dry	Milligrams per Kilogram Dry Weight
mg/L	Milligrams per Liter

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-2

Collection Date: 11/19/2013 01:00 PM

Work Order: 13111254

Lab ID: 13111254-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		·	SW747	1	Prep Date: 11/	25/2013 Analyst: LR
Mercury	0.79		0.12	mg/Kg-dry	5	12/2/2013 04:01 PM
METALS BY ICP-MS			SW602	A0	Prep Date: 12/	11/2013 Analyst: CES
Arsenic	14		2,0	mg/Kg-dry	5	12/11/2013 10:10 PM
Barium	170		2.0	mg/Kg-dry	5	12/11/2013 10:10 PM
Cadmium	1.8		0.82	mg/Kg-dry	5	12/11/2013 10:10 PM
Chromium	32		2.0	mg/Kg-dry	5	12/11/2013 10:10 PM
Lead	65		2.0	mg/Kg-dry	5	12/11/2013 10:10 PM
Selenium	ND		2.0	mg/Kg-dry	5	12/11/2013 10:10 PM
Silver	ND		2.0	mg/Kg-dry	5	12/11/2013 10:10 PM
SEMI-VOLATILE ORGANIC COMPO	UNDS - SIM		SW827	OM	Prep Date: 11/	27/2013 Analyst: HL
Acenaphthene	ND		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Acenaphthylene	N D		19	μ g/Kg-dr y	5	12/3/2013 01:12 AM
Anthracene	23		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(a)anthracene	150		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(a)pyrene	110		19	µg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(b)fluoranthene	180		19	μg/Kg-dry	5	12/ 3 /2013 01:12 AM
Benzo(b-k)fluoranthene	210		39	μg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(e)pyrene	80		58	μg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(g,h,i)perylene	62		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Benzo(k)fluoranthene	29		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Chrysene	78		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Dibenzo(a,h)anthracene	ND		19	μ g/i Kg-dry	5	12/3/2013 01:12 AM
Fluoranthene	170		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Fluorene	ND		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Indeno(1,2,3-cd)pyrene	64		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Naphthalene	ND		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Phenanthrene	72		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Pyrene	140		19	μg/Kg-dry	5	12/3/2013 01:12 AM
Surr: 2-Fluorobiphenyl	77.0		12-100	%REC	5	12/3/2013 01:12 AM
Surr: 4-Terphenyl-d14	93.0		25-137	%REC	5	12/3/2013 01:12 AM
Sur: Nitrobenzene-d5	64.0		37-107	%REC	5	12/3/2013 01:12 AM
VOLATILE ORGANIC COMPOUNDS	ı		SW826	0B	Prep Date: 11/	19/2013 Analyst: CW
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
1,1,2,2-Tetrachloroethane	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
1,1-Dichloroethane	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
1.1-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM

See Qualifiers page for a list of qualifiers and their definitions. Note:

ALS Group USA, Corp

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-2

Collection Date: 11/19/2013 01:00 PM

Work Order: 13111254

Lab ID: 13111254-01

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
2-Butanone	ND		240	μg/Kg-dry	1	11/28/2013 09:48 AM
2-Hexanone	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 09:48 AM
Benzene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Bromodichloromethane	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Bromoform	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Bromomethane	ND		91	μg/Kg-dry	1	11/28/2013 09:48 AM
Carbon disulfide	ND		36	μα/Kg-dry	1	11/28/2013 09:48 AM
Carbon tetrachloride	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Chlorobenzene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Chłoroethane	ND		120	μg/Kg-dry	1	11/28/2013 09:48 AM
Chloroform	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Chloromethane	N D		120	μg/Kg-dry	1	11/28/2013 09:48 AM
cis-1.2-Dichloroethene	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
cis-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Dibromochlorometnane	ND		3 6	μg/Kg-ary	1	11/28/2013 09:48 AM
Ethylbenzene	N D		36	µg/Kg-dry	1	11/28/2013 09:48 AM
m,p-Xylene	ND		72	µg/Kg-dry	1	11/28/2013 09:48 AM
Methylene chloride	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
o-Xviene	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
Styrene	N D		36	μ g/Kg-d ry	1	11/28/2013 09:48 AM
Tetrachloroethene	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
Toluene	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
trans-1,2-Dichloroethene	ND		36	µg/Kg-dry	1	11/28/2013 09:48 AM
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Trichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
Vinyl chloride	ND		36	μg/Kg-dry	1	11/28/2013 09:48 AM
1,2-Dichloroethene, Total	ND		72	μg/Kg-dry	1	11/28/2013 09:48 AN
1,3-Dichloropropene, Total	ND		72	μg/Kg-dry	1	11/28/2013 09:48 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 09:48 AN
Surr: 1,2-Dichloroethane-d4	97.5		70-130	%REC	1	11/28/2013 09:48 AM
Surr: 4-Bromofluorobenzene	96.7		70-130	%REC	1	11/28/2013 09:48 AN
Surr: Dibromofluoromethane	99.0		70-130	%REC	1	11/28/2013 09:48 AN
Surr: Toluene-d8	97.8		70-130	%REC	1	11/28/2013 09:48 AN
MOISTURE			A2540	G		Analyst: MEB
Moisture	17		0.050	% of sam	ple 1	11/26/2013 12:25 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/19/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA Mercury	0.11		SW747	1 mg/Kg-dry	Prep Date: 11/2	5/2013 Analyst: LR 12/2/2013 03:15 PM
Mercury	0.11					
METALS BY ICP-MS			SW602		Prep Date: 12/1	,
Arsenic	20		2.5	mg/Kg-dry		12/11/2013 10:15 PM
Barium	2,600		49	mg/Kg-dry		12/11/2013 11:49 PM
Cadmium	ND		0.99	mg/Kg-dry	5	12/11/2013 10:15 PM
Chromium	26		2.5	mg/Kg-dry		12/11/2013 10:15 PM
Lead	140		2.5	mg/Kg-dry		12/11/2013 10:15 PM
Selenium	ND		2,5	mg/Kg-dry	5	12/11/2013 10:15 PM
Silver	ND		2.5	mg/Kg-dry	5	12/11/2013 10:15 PM
SEMI-VOLATILE ORGANIC COMPOUNI	DS - SIM		SW827	0M	Prep Date: 11/2	7/2013 Analyst: HL
Acenaphthene	ND		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Acenaphthylene	30		2 2	μg/Kg-dry	5	12/3/2013 01:46 AM
Anthracene	24		2 2	μ g/ Kg-dry	5	12/3/2013 01:46 AM
Benzo(a)anthracene	180		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(a)pyrene	130		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(b)fluoranthene	22 0		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(b-k)fluoranthene	250		43	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(e)pyrene	100		65	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(g,h,i)perylene	82		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Benzo(k)fluoranthene	32		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Chrysene	89		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Dibenzo(a,h)anthracene	ND		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Fluoranthene	230		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Fluorene	ND		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Indeno(1,2,3-cd)pyrene	76		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Naphthalene	ND		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Phenanthrene	91		2 2	μg/Kg-dry	5	12/3/2013 01:46 AM
Pyrene	18 0		22	μg/Kg-dry	5	12/3/2013 01:46 AM
Surr: 2-Fluorobiphenyl	67.0		12-100	%REC	5	12/3/2013 01:46 AM
Surr: 4-Terphenyl-d14	86.0		25-137	%REC	5	12/3/2013 01:46 AM
Surr: Nitrobenzene-d5	56.0		37-107	%REC	5	12/3/2013 01:46 AM
VOLATILE ORGANIC COMPOUNDS			SW826	ΛR	Prep Date: 11/1	9/2013 Analyst: CW
1.1.1-Trichloroethane	ND		39	μg/Kg-dry	1 rep Date: 1 1/1	11/28/2013 11:26 AM
1.1,2.2-Tetrachloroethane	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
1.1.2-Trichloroethane	ND.		39	μg/Kg-dry	, 1	11/28/2013 11:26 AM
1.1-Dichloroethane	ND		39	ug/Kg-dry	1	11/28/2013 11:26 AM
1.1-Dichloroethene	ND.		39	ug/Kg-dry	1	11/28/2013 11:26 AM

See Qualifiers page for a list of qualifiers and their definitions. Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample 1D:

Collection Date: 11/19/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-02

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AN
1.2-Dichloropropane	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AN
2-Butanone	ND		260	μg/Kg-dry	1	11/28/2013 11:26 AN
2-Hexanone	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AN
4-Methyl-2-pentanone	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
Acetone	ND		130	µg/Kg-dry	1	11/28/2013 11:26 AM
Benzene	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
Bromodichloromethane	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
Bromoform	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
Bromomethane	ND		98	µg/Kg-dry	1	11/28/2013 11:26 AM
Carbon disulfide	ND		39	μg/Kg-dry	1	11/28/2013 11:26 AM
Carbon tetrachloride	ND		39	μg/Kg-dτy	1	11/28/2013 11:26 AM
Chlorobenzene	ND		39	µg/Kg-dry	1	11/28/2013 11:26 AM
Chloroethane	ND		130	µg/Kg-dry	1	11/28/2013 11:26 AM
Chloroform	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
Chloromethane	ND		130	μg/Kg-dry	1	11/28/2013 11:26 Al
cis-1,2-Dichloroethene	ND		39	μ g/ Kg-dry	1	11/28/2013 11:26 Al
cis-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
Dibromochloromethane	ND		39	µg/Kg-dry	1	11/28/2013 11:26 Al
Ethylbenzene	ND		39	µg/Kg-dry	1	11/28/2013 11:26 Al
m,p-Xylene	ND		79	μg/Kg-dry	1	11/28/2013 11:26 Al
Methylene chloride	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
o-Xylene	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
Styrene	ND		39	µg/Kg-dлу	1	11/28/2013 11:26 Al
Tetrachloroethene	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
Toluene	ND		39	µg/Kg-dry	1	11/28/2013 11:26 Al
trans-1,2-Dichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
trans-1,3-Dichloropropene	ND		. 39	μg/Kg-dry	1	11/28/2013 11:26 Al
Trichloroethene	ND		39	µg/Kg-dry	1	11/28/2013 11:26 AI
Vinyi chloride	ND		39	μg/Kg-dry	1	11/28/2013 11:26 Al
1,2-Dichtoroethene, Total	ND		79	μg/Kg-dry	1	11/28/2013 11:26 Al
1,3-Dichloropropene, Total	ND		79	μ g /Kg-dry	1	11/28/2013 11:26 AI
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 11:26 AI
Surr: 1,2-Dichloroethane-d4	98.5		70-130	%REC	1	11/28/2013 11:26 A
Surr: 4-Bromofluorobenzene	96.4		70-130	%REC	1	11/28/2013 11:26 A
Surr: Dibromofluoromethane	98.6		70-130	%REC.	1	11/28/2013 11:26 Al
Surr: Toluene-d8	99.2		70-130	%REC	1	11/28/2013 11:26 A
MOISTURE			A2540	G		Analyst: MEB
Moisture	24		0.050	% of sam	ple 1	11/26/2013 12:25 PI

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Work Order: 13111254

Lab ID: 13111254-03

Matrix: SOIL

Collection Date: 11/19/2013 02:00 PM

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA	0.039		SW747 0.020	1 mg/Kg-dry	Prep Date: 11	/25/2013 Analyst: LR 12/2/2013 03:18 PM
•	0.005					
METALS BY ICP-MS			SW602		Prep Date: 12	/11/2013 Analyst: CES 12/11/2013 11:54 PM
Arsenic	9.2		2.1	mg/Kg-dry		12/11/2013 11:54 PM
Barium	220		2.1	mg/Kg-dry		12/11/2013 11:54 PM
Cadmium	ND		0.84	mg/Kg-dry	5 5	12/11/2013 11:54 PM
Chromium	16		2.1	mg/Kg-dry		12/11/2013 11:54 PM
Lead	15		2.1	mg/Kg-dry	-	
Selenium	ND 		2.1	mg/Kg-dry	5	12/11/2013 11:54 PM
Silver	ND		2.1	mg/Kg-dry	5	12/11/2013 11:54 PM
SEMI-VOLATILE ORGANIC COMPOUNDS - SIM			SW827	'OM	Prep Date: 11	/27/2013 Analyst: HL
Acenaphthene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Acenaphthylene	ND		3.9	μg/Kg-d <i>r</i> y	1	12/2/2013 06:32 PM
Anthracene	ND		3.9	µg/Kǫ-dry	1	12/2/2013 06:32 PM
Benzo(a)anthracene	ND		3.9	µg/Kg-dry	1	12/2/2013 06:32 PM
Benzo(a)pyrene	ND		3.9	µg/Кд-агу	1	12/2/2013 06:32 PM
Benzo(b)fluoranthene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Benzo(b-k)fluoranthene	ND		7.9	μ g/Kg- dry	1	12/2/2013 06:32 PM
Benzo(e)pyrene	N D		12	μ g/K g-dry	1	12/2/2013 06: 3 2 PM
Benzo(g,h,i)perylene	ND		3.9	µg/Kg-dry	1	12/2/2013 06:32 PM
Benzo(k)fluoranthene	ND		3.9	µg/Kg-dry	1	12/2/2013 06:32 PM
Chrysene	ND.		3.9	µg/Kg-dry	1	12/2/2013 06:32 PM
Dibenzo(a,h)anthracene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Fluoranthene	ND		3.9	μg/Kg-dτy	1	12/2/2013 06:32 PM
Fluorene	ND		3.9	µg/Kg-dry	1	12/2/2013 06:32 PM
Indeno(1,2,3-cd)pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Naphthalene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Phenanthrene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 06:32 PM
Surr: 2-Fluorobiphenyl	66.4		12-100	%REC	1	12/2/2013 06: 3 2 PM
Surr: 4-Terphenyl-d14	92,6		25-137	%REC	1	12/2/2013 06:32 PM
Surr: Nitrobenzene-d5	66.0		37-107	%REC	1	12/2/2013 06:32 PM
VOLATILE ORGANIC COMPOUNDS			SW826	SOR.	Prep Date: 1	1/19/2013 Analyst: CW
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
1,1,2,2-Tetrachloroethane	ND		36	μg/Kg-dry	1	11/28/2013 10: 3 7 AM
1.1.2-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
1.1-Dichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
1,1-Dichloroethene	ND ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-5

Collection Date: 11/19/2013 02:00 PM

Work Order: 13111254

Lab ID: 13111254-03

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
2-Butanone	ND		240	µg/Kg-àry	1	11/28/2013 10:37 AM
2-Hexanone	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 10:37 AM
Benzene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Bromodichloromethane	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Bromoform	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
Bromomethane	ND		90	µg/Kg-dry	1	11/28/2013 10:37 AM
Carbon disulfide	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
Carbon tetrachloride	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
Chlorobenzene	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 10:37 AM
Chloroform	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Chlorometnane	ND		120	μg/Kg-dry	1	11/28/2013 10:37 AM
cis-1.2-Dichloroethene	ND		36	µg/Kg-dry∕	1	11/28/2013 10:37 AM
cis-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Dibromochloromethane	N D		36	µg/Kg-dry	1	11/28/2013 10:37 AM
Ethylbenzene	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
m,p-Xylene	ND		72	µg/Kg-dry	1	11/28/2013 10:37 AM
Methylene chloride	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
o-Xylene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Styrene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Tetrachloroethene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Toluene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
trans-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Trichloroetnene	ND		36	μg/Kg-dry	1	11/28/2013 10:37 AM
Vinyl chloride	ND		36	µg/Kg-dry	1	11/28/2013 10:37 AM
1,2-Dichloroethene, Total	ND		72	µg/Kg-dry	1	11/28/2013 10:37 AM
1,3-Dichloropropene, Total	ND		72	µg/Kg-dry	1	11/28/2013 10:37 AN
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 10:37 AM
Surr: 1,2-Dichloroethane-d4	99.4		70-130	%REC	1	11/28/2013 10:37 AN
Surr: 4-Bromofluorobenzene	96.8		70-130	%REC	1	11/28/2013 10:37 AM
Surr: Dibromolluoromethane	100		70-130	%REC	1	11/28/2013 10:37 AN
Surr: Toluene-d8	98.4		70-130	%REC	1	11/28/2013 10:37 AN
MOISTURE			A2540	G		Analyst: MEB
Moisture	17		0.050	% of sam	ple 1	11/26/2013 12:25 PM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-6

Collection Date: 11/20/2013 03:20 PM

Work Order: 13111254

Lab ID: 13111254-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 11/2	25/2013 Analyst: LR
Mercury	0.056		0.023	mg/Kg-dry	1	12/2/2013 03:20 PM
METALS BY ICP-MS			SW602	ΑO	Prep Date: 12/1	1/2013 Analyst: CES
Arsenic	14		1.9	mg/Kg-dry	5	12/12/2013
Barium	480		1.9	mg/Kg-dry	5	12/12/2013
Cadmium	ND		0.77	mg/Kg-dry	5	12/12/2013
Chromium	55		1.9	mg/Kg-dry	5	12/12/2013
Lead	34		1.9	mg/Kg-dry	5	12/12/2013
Selenium	ND		1.9	mg/Kg-dry	5	12/12/2013
Silver	ND		1.9	mg/Kg-dry	5	12/12/2013
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	0M	Prep Date: 11/2	7/2013 Analyst: HL
Acenaphthene	ND		2 0	μg/Kg-dry	5	12/3/2013 02:19 AM
Acenaphthylene	26		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Anthracene	ND		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Велzo(a)anthracene	130		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(a)pyrene	110		2 0	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(b)fluoranthene	170		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(b-k)fluoranthene	200		3 9	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(e)pyrene	84		59	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(g,h,i)perylene	73		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Benzo(k)fluoranthene	27		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Chrysene	61		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Dibenzo(a,h)anthracene	ND		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Fluoranthene	110		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Fluorene	ND		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Indeno(1,2,3-cd)pyrene	65		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Naphthalene	ND		2 0	μg/Kg-dry	5	12/3/2013 02:19 AM
Phenanthrene	20		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Pyrene	110		20	μg/Kg-dry	5	12/3/2013 02:19 AM
Sur: 2-Fluorobiphenyl	81.0		12-100	%REC	5	12/3/2013 02:19 AM
Surr: 4-Terphenyl-d14	96.0		25-137	%REC	5	12/3/2013 02:19 AM
Surr: Nitrobenzene-d5	68.0		37-107	%REC	5	12/3/2013 02:19 AM
VOLATILE ORGANIC COMPOUNDS			SW826	nB	Prep Date: 11/1	9/2013 Analyst: AK
1.1.1-Trichloroethane	ND		36	μg/Kg-dry	1 1 top Date. 1471	11/29/2013 12:18 PM
1,1,2,2-Tetrachloroethane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
1,1-Dichloroethane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
1,1-Dichloroethene	ND		36	μg/Kg-dry μg/Kg-dry	1	11/29/2013 12:18 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-6

Collection Date: 11/20/2013 03:20 PM

Work Order: 13111254

Lab ID: 13111254-04

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
2-Butanone	ND		240	μg/Kg-dry	1	11/29/2013 12:18 PM
2-Hexanone	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Acetone	ND		120	μg/Kg-dry	1	11/29/2013 12:18 PM
Benzene	ND		36	μg/Kg-αry	1	11/29/2013 12:18 PM
Bromodichloromethane	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Bromoform	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Bromomethane	ND		90	μg/Kg-dry	1	11/29/2013 12:18 PM
Carbon disulfide	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Carpon tetrachloride	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Chłorobenzene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Chłoroethane	ND		120	μg/Kg-dry	1	11/29/2013 12:18 PM
Chłoroform	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Chloromethane	ND		120	μg/Kg-dry	1	11/29/2013 12:18 PM
cis-1.2-Dichloroethene	ND		36	µg/Kg-dry	î	11/29/2013 12:18 PM
cis-1,3-Dichioropropene	ND		36	µg/Kg-dry	1	11/29/2013 12:18 PM
Dibromochloromethane	ND		36	µg/Kg-dry	1	11/29/2013 12:18 PM
Ethylbenzene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
m,p-Xylene	ND		72	μg/Kg-dry	1	11/29/2013 12:18 PM
Methylene chłoride	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
o-Xylene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Styrene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Tetrachloroethene	ND		36	µg/Kg-dry	1	11/29/2013 12:18 PM
Toluene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
trans-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Trichloroethene	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
Vinyl chloride	ND		36	μg/Kg-dry	1	11/29/2013 12:18 PM
1,2-Dichloroethene, Total	ND		72	μg/Kg-dry	1	11/29/2013 12:18 PM
1,3-Dichloropropene, Total	ND		72	μg/Kg-dry	1	11/29/2013 12:18 PM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/29/2013 12:18 PM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	1	11/29/2013 12:18 PM
Surr: 4-Bromofluorobenzene	95.0		70-130	%REC	1	11/29/2013 12:18 PM
Surr: Dibromofluoromethane	98.5		70-130	%REC	1	11/29/2013 12:18 PM
Surr: Toluene-d8	103		70-130	%REC	1	11/29/2013 12:18 PM
OISTURE			A2540	G		Analyst: MEB
Moisture	17		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-7

Collection Date: 11/19/2013 04:00 PM

Work Order: 13111254

Lab ID: 13111254-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW 7471		Prep Date:	11/25/2013 Analyst: LR
Mercury	0.10		0.022	mg/Kg-dry	1	12/2/2013 03:23 PM
METALS BY ICP-MS			SW6020)A	Prep Date:	12/11/2013 Analyst: CES
Arsenic	8.9		2.2	mg/Kg-dry	5	12/12/2013 12:27 AM
Barium	190		2.2	mg/Kg-dry	5	12/12/2013 12:27 AM
Cadmium	ND		0.90	mg/Kg-dry	5	12/12/2013 12:27 AM
Chromium	18		2.2	mg/Kg-dry	5	12/12/2013 12:27 AM
Lead	20		2.2	mg/Kg-dry	5	12/12/2013 12:27 AM
Selenium	ND		2.2	mg/Kg-dry	5	12/12/2013 12:27 AM
Silver	ND		2.2	mg/Kg-dry	5	12/12/2013 12:27 AN
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	М	Prep Date:	11/27/2013 Analyst: HL
Acenaphthene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Acenaphthylene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Anthracene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(a)anthracene	5.0		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(a)pyrene	5.0		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(b)fluoranthene	7.7		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(b-k)fluoranthene	11		7.7	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(g,h,i)perylene	3.9	J	3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Benzo(k)fluoranthene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Chrysene	6.2		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Dibenzo(a,h)anthracene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Fluoranthene	6.9		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Fluorene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Indeno(1,2,3-cd)pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Naphthalene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Phenanthrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Pyrene	6.9		3.9	μg/Kg-dry	1	12/2/2013 07:06 PM
Surr: 2-Fluorobiphenyl	75.4		12-100	%REC	1	12/2/2013 07:06 PM
Surr: 4-Terphenyl-d14	97.6		25-137	%REC	1	12/2/2013 07:06 PM
Surr: Nitrobenzene-d5	72.8		37-107	%REC	1	12/2/2013 07:06 PM
VOLATILE ORGANIC COMPOUNDS			SW8260)В	Prep Date:	11/19/2013 Analyst: AK
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 AM
1,1,2,2-Tetrachloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 AM
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 AM
1,1-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 AM
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-7

Collection Date: 11/19/2013 04:00 PM

Work Order: 13111254

Lab 1D: 13111254-05

Matrix: SOIL

		Report Dilution								
Analyses	Result	Qual	Limit	Units	Factor	Date Analyzed				
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
1,2-Dichloropropane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
2-Butanone	ND		240	μg/Kg-dry	1	11/28/2013 10:02 A				
2-Hexanone	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 10:02 A				
Benzene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 Al				
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Bromoform	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Bromomethane	ND		88	μg/Kg-dry	1	11/28/2013 10:02 A				
Carbon disulfide	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Carbon tetrachioride	ND		3 5	μg/Kg-dry	1	11/28/2013 10:02 A				
Chłorobenzene	ND		3 5	μg/Kg-dry	1	11/28/2013 10:02 A				
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 10:02 A				
Chioroform	ND		35	μg/Kg-dry	1	11/28/2013 10:02 Ai				
Chioromethane	ND		120	μg/Kg-ary	1	11/28/2013 10:02 A				
cis-1,2-Dichloroethene	ND		35	μ g/Kg-d ry	1	11/28/2013 10:02 A				
cis-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Dibromochloromethane	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Ethylbenzene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
m,p-Xylene	ND		71	μg/Kg-dry	1	11/28/2013 10:02 A				
Methylene chloride	ND		35	µg/Kg-dry	1	11/28/2013 10:02 A				
o-Xylene	ND		35	µg/Kg-dry	1	11/28/2013 10:02 A				
Styrene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Tetrachloroethene	ND		3 5	μg/Kg-dry	1	11/28/2013 10:02 A				
Toluene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 Ai				
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Trichtoroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:02 A				
Vinyl chloride	ND		35	μg/Kg-dry	1	11/28/2013 10:02 Ai				
1,2-Dichloroethene, Total	ND		71	μg/Kg-dry	1	11/28/2013 10:02 A				
1,3-Dichloropropene, Total	ND		71	μg/Kg-dry	1	11/28/2013 10:02 Ai				
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 10:02 Ai				
Surr: 1,2-Dichloroethane-d4	104		70-130	%REC	1	11/28/2013 10:02 A				
Surr: 4-Bromofluorobenzene	93.6		70-130	%REC	1	11/28/2013 10:02 A				
Surr: Dibromofluoromethane	96.6		70-130	%REC	1	11/28/2013 10:02 A				
Surr: Toluene-d8	103		70-130	%REC	1	11/28/2013 10:02 A				
IOISTURE			A2540	G		Analyst: MEB				
Moisture	15		0.050	% of samp	ole 1	11/26/2013 12:25 PI				

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-8 Collection Date: 11/20/2013 02:00 PM

Work Order: 13111254

Lab ID: 13111254-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA	·		SW747	[Prep Date:	11/25/2013 Analyst: LR
Mercury	0.66		0.11	mg/Kg-dry	5	12/2/2013 04:04 PM
METALS BY ICP-MS			SW6020)A	Prep Date:	12/11/2013 Analyst: CES
Arsenic	13		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
Barium	600		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
Cadmium	ND		0.78	mg/Kg-dry	5	12/12/2013 12:33 AM
Chromium	16		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
Lead	15		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
Selenium	ND		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
Silver	ND		2.0	mg/Kg-dry	5	12/12/2013 12:33 AM
EMI-VOLATILE ORGANIC COMPOUNDS - SIM SW8270M		M	Prep Date:	11/27/2013 Analyst: HL		
Acenaphthene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Acenaphthylene	ND		3.9	µg/Kg-ary	1	12/2/2013 07:39 PM
Anthracene	ND		3.9	µg/Kg-dry	1	12/2/2013 07:39 PM
Benzo(a)anthracene	ND		3.9	µg/Kg-dry	1	12/2/2013 07:39 PM
Benzo(a)pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM:
Benzo(b)fluoranthene	ND		3.9	μ g/ Kg-dry	1	12/2/2013 07:39 PM
Benzo(b-k)fiuoranthene	ND		7.8	μg/Kg-dry	1	12/2/2013 07:39 PM
Benzo(e)pyrene	ND		12	μ g/ Kg-dry	1	12/2/2013 07:39 PM
Benzo(g,h,i)perylene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Benzo(k)fluoranthene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Chrysene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Dibenzo(a,h)anthracene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Fluoranthene	N D		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Fluorene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Indeno(1,2,3-cd)pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Naphthalene	ND		3.9	μ g/ Kg-dry	1	12/2/2013 07:39 PM
Phenanthrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Pyrene	ND		3.9	μg/Kg-dry	1	12/2/2013 07:39 PM
Surr: 2-Fluorobiphenyl	65.4		12-100	%REC	1	12/2/2013 07:39 PM
Surr: 4-Terphenyl-d14	105		25-137	%REC	1	12/2/2013 07:39 PM
Surr: Nitrobenzene-d5	69. <i>4</i>		37-107	%REC	1	12/2/2013 07:39 PM
VOLATILE ORGANIC COMPOUNDS			SW8260)B	Prep Date:	11/19/2013 Analyst: AK
1,1,1-Trichloroethane	ND		35	µg/Kg-dry	. 1	11/28/2013 10:50 AM
1,1,2,2-Tetrachloroethane	ND		35	µg/Kg-dry	1	11/28/2013 10:50 AM
1,1,2-Trichloroethane	ND		. 35	μg/Kg-dry	1	11/28/2013 10:50 AM
1,1-Dichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-8

Collection Date: 11/20/2013 02:00 PM

Work Order: 13111254 Lab ID: 13111254-06

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	μg/Kg-dry	1 .	11/28/2013 10:50 AM
1,2-Dichloropropane	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
2-Butanone	ND		240	μg/Kg-dry	1	11/28/2013 10:50 AM
2-Hexanone	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
4-Methyl-2-pentanone	ND		3 5	µg/Kg-dry	1	11/28/2013 10:50 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 10:50 AM
Benzene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Bromoform	ND		3 5	μg/Kg-dry	1	11/28/2013 10:50 AM
Bromomethane	ND		89	μg/Kg-dry	1	11/28/2013 10:50 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Chioroethane	ND		120	μg/Kg-dry	1	11/28/2013 10:50 AM
Chloroform	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 10:50 AM
cis-1,2-Dichtoroethene	ND		3 5	μα/Κο-dry	1	11/28/2013 10:50 AM
cis-1,3-Dichloropropene	ND		35	μ g/Kg-d ry	1	11/28/2013 10:50 AM
Dibromochioromethane	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Ethylbenzene	ND		35	μg/Kg-αry	1	11/28/2013 10:50 AM
m,p-Xylene	ND		71	μg/Kg-dry	1	11/28/2013 10:50 AM
Methylene chloride	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
o-Xylene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Styrene	ND		35	μ g/ Kg-dry	1	11/28/2013 10:50 AM
Tetrachloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Toluene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
Vinyl chloride	ND		35	μg/Kg-dry	1	11/28/2013 10:50 AM
1,2-Dichloroethene, Total	ND		71	μg/Kg-dry	1	11/28/2013 10:50 AM
1,3-Dichloropropene, Total	ND		71	μg/Kg-dry	1	11/28/2013 10:50 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 10:50 AM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	1	11/28/2013 10:50 AM
Surr: 4-Bromofluorobenzene	97.2		70-130	%REC	1	11/28/2013 10:50 AM
Surr: Dibromofluoromethane	99.7		70-130	%REC	1	11/28/2013 10:50 AM
Surr: Toluene-d8	104		70-130	%REC	1	11/28/2013 10:50 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	15		0.050	% of sam	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/20/2013 12:00 PM

Work Order: 13111254

Lab ID: 13111254-07

Matrix: SOIL

Collection Date: 11/20/2013 12:00 PM	Maiux: 2017						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
MERCURY BY CVAA			SW747		•	11/25/2013	Analyst: LR
Mercury	0.24		0.024	mg/Kg-dry	1	12/	2/2013 03:27 PM
METALS BY ICP-MS			SW602	A0.	Prep Date:	1 2/11/201 3	Analyst: CE\$
Arsenic	15		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
Barium	200		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
Cadmium	1.4		0.80	mg/Kg-dry	5	12/	12/2013 12:38 AM
Chromium	26		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
Lead	63		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
Selenium	ND		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
Silver	ND		2.0	mg/Kg-dry	5	12/	12/2013 12:38 AM
SEMI-VOLATILE ORGANIC COMPOUNT	OS - SIM		SW827	OM	Prep Date:	11/27/2013	Analyst: HL
Acenaphthene	ND		4.0	μg/Kg-dry	. 1		2/2013 08:12 PM
Acenaphthylene	6.0		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Anthracene	4.4		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Benzo(a)anthracene	32		4.0	μg/Kg-dry	4	12/	2/2013 08:12 PM
Велго(а)ругене	34		4.0	μg/Kg-dry	2	12/	2/2013 08:12 PM
Benzo(b)fluoranthene	49		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Benzo(b-k)fluoranthene	70		8.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Benzo(e)pyrene	30		12	μg/Kg-dry	1	12/	2/2013 08:12 PM
Benzo(g,h,i)perylene	23		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Benzo(k)fluoranthene	21		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Chrysene	39		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Dibenzo(a,h)anthracene	5.6		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Fluoranthene	49		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Fluorene	ND		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Indeno(1,2,3-cd)pyrene	23		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Naphthalene	4.8		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Phenanthrene	23		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Pyrene	44		4.0	μg/Kg-dry	1	12/	2/2013 08:12 PM
Surr: 2-Fluorobiphenyl	72.0		12-100	%REC	1	12/	2/2013 08:12 PM
Surr: 4-Terphenyl-d14	87.8		25-137	%REC	1	12/	2/2013 08:12 PM
Surr: Nitrobenzene-d5	74.8		37-107	%REC	1	12/	2/2013 08:12 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0В	Prep Date:	11/19/2013	Analyst: AK
1,1,1-Trichloroethane	ND		37	μg/Kg-dry	1		28/2013 11:14 AM
1,1,2,2-Tetrachloroethane	ND		37	μg/Kg-dry	1	.11/	28/2013 11:14 AM
1,1,2-Trichloroethane	ND		37	μg/Kg-dry	1	11/	28/2013 11:14 AM
1,1-Dichloroethane	ND		37	μg/Kg-dry	1		28/2013 11:14 AM
1,1-Dichloroethene	ND		37	μg/Kg-dry	1	11/	28/2013 11:14 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-9

Work Order: 13111254 Lab ID: 13111254-07

Collection Date: 11/20/2013 12:00 PM Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
1.2-Dichloropropane	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
2-Butanone	ND		250	μg/Kg-d <i>r</i> y	1	11/28/2013 11:14 AM
2-Hexanone	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
4-Methyl-2-pentanone	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Acetone	ND		12 0	μ g/K g-dry	1	11/28/2013 11:14 AM
Веплепе	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Bromodichioromethane	ND		37	µg/Kg-dry	1	11/28/2013 11:14 AM
Bromoform	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Bromomethane	ND		92	μg/Kg-dry	1	11/28/2013 11:14 AM
Carbon disulfide	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Carbon tetrachloride	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Chlorobenzene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Chioroethane	ND		1 2 0	µg/Kg-dry	1	11/28/2013 11:14 AM
Chloroform	N D		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 11:14 AM
cis-1.2-Dichloroethene	ND		3 7	μg/Kg-dry	1	11/28/2013 11:14 AM
cis-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Dibromochloromethane	N D		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Ethylbenzene	ND		37	μ g/K g-dry	1	11/28/2013 11:14 AM
m,p-Xylene	ND		7 4	μg/Kg-dry	1	11/28/2013 11:14 AM
Methylene chloride	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
o-Xylene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Styrene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Tetrachioroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Toluene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
trans-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
trans-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Trichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
Vinyl chloride	ND		37	μg/Kg-dry	1	11/28/2013 11:14 AM
1,2-Dichloroethene, Total	ND		74	μg/Kg-dry	1	11/28/2013 11:14 AM
1,3-Dichloropropene, Total	ND		74	μg/Kg-dry	1	11/28/2013 11:14 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 11:14 AM
Surr: 1,2-Dichloroethane-d4	108		70-130	%REC	1	11/28/2013 11:14 AM
Surr: 4-Bromofiuorobenzene	96.6		70-130	%REC	1	11/28/2013 11:14 AM
Surr: Dibromofluoromethane	99.6		70-130	%REC	1	11/28/2013 11:14 AM
Surr: Toluene-d8	103		70-130	%REC	1	11/28/2013 11:14 AM
MOISTURE			A2540			Analyst: MEB
Moisture	19		0.050	% of sam	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-10

Work Order: 13111254

Lab ID: 13111254-08

Collection Date: 11/20/2013 02:30 PM		Matrix: SOIL						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed		
MERCURY BY CVAA	0.081		SW747	=	Prep Date:	,		
Mercury	0.061		0.017	mg/Kg-dry	j	12/4/2013 12:18 PM		
METALS BY ICP-MS			SW602	0A	Prep Date:	12/11/2013 Analyst: CES		
Arsenic	39		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
Barium	570		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
Cadmium	1.9		0.82	mg/Kg-dry	5	12/12/2013 01:00 AM		
Chromium	44		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
Lead	82		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
Selenium	ND		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
Silver	ND		2.1	mg/Kg-dry	5	12/12/2013 01:00 AM		
SEMI-VOLATILE ORGANIC COMPOU	NDS - SIM		SW827	0 M	Prep Date:	11/27/2013 Analyst: HL		
Acenaphthene	ND		37	µg/Kg-dry	10	12/3/2013 12:06 PM		
Acenaphthylene	ND		37	µg/Kg-dry	10	12/3/2013 12:06 PM		
Anthracene	45		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(a)anthracene	300		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(a)pyrene	230		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(b)fluoranthene	380		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(b-k)fluoranthene	450		74	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(e)pyrene	190		110	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(g,h,i)perylene	170		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Benzo(k)fluoranthene	63		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Chrysene	160		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Dibenzo(a,h)anthracene	37		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Fluoranthene	480		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Fluorene	ND		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Indeno(1,2,3-cd)pyrene	140		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Naphthalene	ND.		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Phenanthrene	310		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Pyrene	390		37	μg/Kg-dry	10	12/3/2013 12:06 PM		
Surr: 2-Fluorobiphenyl	66.0		12-100	%REC	10	12/3/2013 12:06 PM		
Surr: 4-Terphenyl-d14	88.0		25-137	%REC	10	12/3/2013 12:06 PM		
Surr: Nitrobenzene-d5	52.0		37-107	%REC	10	12/3/2013 12:06 PM		
VOLATILE ORGANIC COMPOUNDS			SW826	nR	Prep Date:	11/19/2013 Analyst: AK		
1,1,1-Trichloroethane	ND		34	µg/Kg-dry	1 1	11/28/2013 11:38 AM		
1,1,2,2-Tetrachloroethane	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 11:38 AM		
1,1,2-Trichloroethane	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 11:38 AM		
1,1-Dichloroethane	ND ND		34	µg/Kg-dry µg/Kg-dry	1	11/28/2013 11:38 AM		
1,1-Dichloroethene	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 11:38 AM		

Note:

* /

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

Sample ID: SS-10

Collection Date: 11/20/2013 02:30 PM

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-08

Matrix: SOIL

1.2-Dichioropropane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 2-Butanone ND 220 µg/Kg-dry 1 11/28/2013 11:38 AM 4-Methyl-2-pentanone ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 4-Methyl-2-pentanone ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 4-Methyl-2-pentanone ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Acelone ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromoform ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Caroon disulfide ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Caroon tetrachioride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Caroon tetrachioride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chioroethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chioroethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chioroethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1_2-Dichioropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1_2-Dichioropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Ethylbenzane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Ethylbenzane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Disromochioromethane ND 34 µg/Kg-dry 1 11/28/20	Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
2-Butanone ND 220 μg/Kg-dry 1 11/28/2013 11:38 AM 2-Nexanone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 4-Methyl-2-pentanone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Acetone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Acetone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Formodichioromethane ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Bromotom ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Carbon detarchioride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chiorobenzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Cs-1.2-Dichloroethene ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM cs-1.2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM cs-1.2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM cs-1.2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Elitylbenzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM mg-xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Thichioroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM mg-xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM mg-xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 17-1-biohoroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 17-biohoroethene ND 34 μg/K	1,2-Dichloroethane	ND	•	34	μg/Kg-dry	1	11/28/2013 11:38 AM
2-Hexanone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 4-Methyl-2-pentanone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM A-Methyl-2-pentanone ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 84 μg/Kg-dry 1 11/28/2013 11:38 AM Bromomethane ND 84 μg/Kg-dry 1 11/28/2013 11:38 AM Bromomethane ND 84 μg/Kg-dry 1 11/28/2013 11:38 AM Carbon disulfide ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Cis-1,2-Dichloroethene ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Cis-1,2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 μg/Kg-dry	1,2-Dichtoropropane	ND		34	µg/Kg-dry	1	11/28/2013 11:38 AM
4-Methyl-2-pentanone ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Acetone ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Benzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Bromoform ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Bromomethane ND 84 μg/Kg-dry 1 11/28/2013 11:38 AM Carbon disulide ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Carbon disulide ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chiorobenzene ND 34 μg/Kg-dry 1	2-Butanone	ND		220	μg/Kg-d <i>r</i> y	1	11/28/2013 11:38 AM
Acetone ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Benzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromodichioromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromomethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Bromomethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Carbon disulfide ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Carbon disulfide ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Cis-1.2-Dichloroethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Cis-1.2-Dichloroethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Dibromochioromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Mp-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene Chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 17ans-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 17ans-1,2-Dichloro	2-Hexanone	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Benzene ND 34 μg/kg-dry 1 11/28/2013 11:38 AM promodichloromethane ND 34 μg/kg-dry 1 11/28/2013 11:38 AM promodichloromethane ND 34 μg/kg-dry 1 11/28/2013 11:38 AM promodichloromethane ND 84 μg/kg-dry 1 11/28/2013 11:38 AM promomethane ND 84 μg/kg-dry 1 11/28/2013 11:38 AM promomethane ND 84 μg/kg-dry 1 11/28/2013 11:38 AM promomethane ND 34 μg/kg-dry 1 11/28/2013 11:38 AM promomethane ND 110 μg/kg-dry 1 11/28/2013 11:38 AM promomethane ND 34 μg/kg-dry 1 11	4-Methyl-2-pentanone	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Bromodichloromethane	Acetone	ND		110	μg/Kg-dry	1	11/28/2013 11:38 AM
Bromoform	Benzene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Bromomethane	Bromodichloromethane	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Carbon disulfide ND 34	Bromoform	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Carbon tetrachloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chlorobenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chlorobethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Chloroform ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chloroform ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Cis-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM pg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroe	Bromomethane	ND		84	μg/Kg-dry	1	11/28/2013 11:38 AM
Chlorobenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chloroethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM Chloroform ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chloroform ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1.2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM pg/Kg-dry	Carbon disulfide	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Chloroethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM Chloroform ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM cis-1,2-Dichloroptopene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM m.p-Xylene ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM m.p-Xylene ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM O-Xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Siyrene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloropropene ND 3	Carbon tetrachloride	ND		34	µg/Kg-dry	1	11/28/2013 11:38 AM
Chloroform ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM cis-1,2-Dichloroptehene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloroppene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloroppene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Ethylbenzene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM m,p-Xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM m,p-Xylene ND 667 μg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trans-1,2-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trans-1,2-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trans-1,2-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trans-1,3-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethene-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Tolue	Chlorobenzene	ND		34	µg/Kg-dry	1	11/28/2013 11:38 AM
Chloromethane ND 110 μg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM pg/Kg-dry	Chloroethane	ND		110	µg/Kg-dry	1	11/28/2013 11:38 AM
cis-1.2-Dichloroethene NP 34 µg/Kg-dry 1 11/28/2013 11:38 AM cis-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Ethylbenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM McHylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 <td>Chloroform</td> <td>ND</td> <td></td> <td>34</td> <td>μg/Kg-dry</td> <td>1</td> <td>11/28/2013 11:38 AM</td>	Chloroform	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
cis-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Dibromochloromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Ethylbenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM m.p-Xylene ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 µg/Kg-dry	Chloromethane	ND		110		1	11/28/2013 11:38 AM
Dibromochloromethane ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Pg/Kg-dry 1 11/28/2013 11:38 AM	cis-1.2-Dichloroethene	NE		34	μα/Κο-dry	1	11/28/2013 11:38 AM:
Ethylbenzene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM m.p-Xylene ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trans-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM J.3-Dichloroethene, Total ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM J.3-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM J.3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surrich MB Surric	cis-1,3-Dichloropropene	ND		34		1	11/28/2013 11:38 AM
Methylene chloride	Dibromochloromethane	ND		34	μα/Kg-dry	1	11/28/2013 11:38 AM
Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 67 µg/Kg	Ethylbenzene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Methylene chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM o-Xylene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Styrene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethane-4 ND 67 µg/Kg-dry	m,p-Xylene	ND		67	μg/Kg-dry	1	11/28/2013 11:38 AM
Styrene	Methylene chloride	ND		34	=	1	11/28/2013 11:38 AM
Styrene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM Tetrachloroethene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM Toluene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloropropene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 µg/kg-dry 1 11/28/2013 11:38 AM Vinyl chloroethene, Total ND 67 µg/kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 µg/kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethene-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6	o-Xylene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Toluene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM trans-1,2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM	Styrene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
trans-1,2-Dichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM trans-1,3-Dichloropropene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	Tetrachloroethene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
trans-1,3-Dichloropropene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Trichloroethene ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 ND 100 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G	Toluene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Trichloroethene ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM Vinyl chloride ND 34 μg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 μg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 ND 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	trans-1,2-Dichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Vinyl chloride ND 34 µg/Kg-dry 1 11/28/2013 11:38 AM 1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM	trans-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	Trichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
1,2-Dichloroethene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM 1,3-Dichloropropene, Total ND 67 µg/Kg-dry 1 11/28/2013 11:38 AM Xylenes, Total ND 100 µg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	Vinyl chloride	ND		34	μg/Kg-dry	1	11/28/2013 11:38 AM
Xylenes, Total ND 100 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofiuorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G A2540 G Analyst: MEB	1,2-Dichloroethene, Total	ND		67		1	11/28/2013 11:38 AM
Xylenes, Total ND 100 μg/Kg-dry 1 11/28/2013 11:38 AM Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	1,3-Dichloropropene, Total	ND		67	μg/Kg-dry	1	11/28/2013 11:38 AM
Surr: 1,2-Dichloroethane-d4 104 70-130 %REC 1 11/28/2013 11:38 AM Surr: 4-Bromofluorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	Xylenes, Total	ND		100	• •	1	11/28/2013 11:38 AM
Surr: 4-Bromofiuorobenzene 97.2 70-130 %REC 1 11/28/2013 11:38 AM Surr: Dibromofiuoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB	· ·	104		70-130		1	11/28/2013 11:38 AM
Surr: Dibromofluoromethane 99.6 70-130 %REC 1 11/28/2013 11:38 AM Surr: Toluene-d8 103 70-130 %REC 1 11/28/2013 11:38 AM MOISTURE A2540 G Analyst: MEB		97.2		70-130	%REC	1	11/28/2013 11:38 AM
MOISTURE A2540 G Analyst: MEB	Surr: Dibromofluoromethane	99.6		70-130	%REC	1	11/28/2013 11:38 AM
,	Surr: Toluene-d8	103		70-130	%REC	1	11/28/2013 11:38 AM
Moisture 11 0.050 % of sample 1 11/26/2013 12:25 PM							,
	Moisture	1 1		0.050	% of samp	le 1	11/26/2013 12:25 PM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-11

Collection Date: 11/19/2013 10:00 AM

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-09

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep Date:	
Mercury	0.028		0.015	mg/Kg-dry	1	12/4/2013 12:20 PM
METALS BY ICP-MS			SW6020	A	Prep Date:	12/11/2013 Analyst: CES
Arsenic	7.7		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
Barium	160		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
Cadmium	ND		0.92	mg/Kg-dry	5	12/12/2013 01:11 AM
Chromium	14		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
Lead	12		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
Selenium	ND		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
Silver	ND		2.3	mg/Kg-dry	5	12/12/2013 01:11 AM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	М	Prep Date:	11/27/2013 Analyst: HL
Acenaphthene	ND		3.7	ug/Kg-dry	1	12/2/2013 08:46 PM
Acenaphthylene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Anthracene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(a)anthracene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(a)pyrene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(b)fluoranthene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(b-k)fluoranthene	ND		7.4	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(e)pyrene	ND		1 1	μg/Kg-dry	1	12/2/2013 08:46 PM
Велzo(g,h,i)perylene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Benzo(k)fluoranthene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Chrysene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Dibenzo(a,h)anthracene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Fluoranthene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Fluorene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
indeno(1,2,3-cd)pyrene	ND		3.7	μg/Kg-dry	1	12/2/2013 0 8:46 PM
Naphthalene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Phenanthrene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Pyrene	ND		3.7	μg/Kg-dry	1	12/2/2013 08:46 PM
Surr: 2-Fluorabiphenyl	61.4		12-100	%REC	1	12/2/2013 08:46 PM
Surr: 4-Terphenyl-d14	96.0		25-137	%REC	1	12/2/2013 08:46 PM
Surr: Nitrobenzene-d5	71.2		37-107	%REC	1	12/2/2013 08:46 PM
VOLATILE ORGANIC COMPOUNDS			SW8260	B	Pren Date:	11/19/2013 Analyst: CW
1,1,1-Trichloroethane	ND		34	μg/Kg-dry	1 rep Date.	11/28/2013 07:47 AM
1,1.2,2-Tetrachloroethane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
1,1,2-Trichloroethane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
1.1-Dichloroethane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
1.1-Dichloroethene	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 07:47 AM

Note:

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

Sample ID: SS-11

Collection Date: 11/19/2013 10:00 AM

Datc: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-09

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		34	μ g /Kg-dry	1	11/28/2013 07:47 AM
1,2-Dichloropropane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
2-Butanone	ND		220	µg/Kg-dry	1	11/28/2013 07:47 AM
2-Hexanone	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
4-Methyl-2-pentanone	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Acetone	ND		110	μg/Kg-dry	1	11/28/2013 07:47 AM
Benzene	ND		34	μ g /Kg-dry	1	11/28/2013 07:47 AM
Bromodichloromethane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Bromoform	ND		34	µg/Kg-dry	1	11/28/2013 07:47 AM
Bromomethane	ND		84	μg/Kg-dry	1	11/28/2013 07:47 AM
Carbon disulfide	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Carbon tetrachloride	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Chlorobenzene	ND		34	μg/Kg-dτy	1	11/28/2013 07:47 AM
Chloroethane	ND		110	μg/Kg-dry	1	11/28/2013 07:47 AM
Chloroform	ND		34	µg/Kg-dry	1	11/28/2013 07:47 AM
Chloromethane	N D		110	μg/Kg-dry	1	11/28/2013 07:47 AM
cis-1.2-Dichloroethene	ND		34	μο/Kg-dry	1	11/28/2013 07:47 AM
cis-1.3-Dichloropropene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Dibromochloromethane	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Ethylbenzene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
m,p-Xylene	ND		67	μg/Kg-dry	1	11/28/2013 07:47 AM
Methylene chloride	ND		34	µg/Kg-dry	1	11/28/2013 07:47 AM
o-Xylene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Styrene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Tetrachloroethene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Toluene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
trans-1,2-Dichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
trans-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Trichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
Vinyl chloride	ND		34	μg/Kg-dry	1	11/28/2013 07:47 AM
1,2-Dichloroethene, Total	ND		67	μg/Kg-dry	1	11/28/2013 07:47 AM
1,3-Dichloropropene, Total	ND		67	μg/Kg-dry	1	11/28/2013 07:47 AM
Xylenes, Total	ND		100	μg/Kg-dry	1.	11/28/2013 07:47 AM
Surr: 1,2-Dichloroethane-d4	95.4		70-130	%REC	1	11/28/2013 07:47 AM
Surr: 4-Bromofluorobenzene	96.8		70-130	%REC	1	11/28/2013 07:47 AM
Surr: Dibromofluoromethane	99.6		70-130	%REC	1	11/28/2013 07:47 AN
Surr: Toluene-d8	99.1		70-130	%REC	1	11/28/2013 07:47 AM
fOISTURE			A2540	_		Analyst: MEB
Moisture	11		0.050	% of sam	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-12

Collection Date: 11/19/2013 11:30 AM

Work Order: 13111254

Lab ID: 13111254-10

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/ 3	3/2013 Analyst: LR
Mercury	0.11		0.019	mg/Kg-dry	1	12/4/2013 12:23 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 12/1	1/2013 Analyst: CES
Arsenic	16		1.9	mg/Kg-dry	5	12/12/2013 01:17 AM
Barium	420		1.9	mg/Kg-dry	5	12/12/2013 01:17 AM
Cadmium	ND		0.74	mg/Kg-dry	5	12/12/2013 01:17 AM
Chromium	17		1.9	mg/Kg-dry	5	12/12/2013 01:17 AM
Lead	54		1.9	mg/Kg-dry	. 5	12/12/2013 01:17 AM
Selenium	ND		1.9	mg/Kg-dry	5	12/12/2013 01:17 AM
Silver	ND		1.9	mg/Kg-dry	, 5	12/12/2013 01:17 AM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	0M	Prep Date: 11/2	27/2013 Analyst: HL
Acenaphthene	57		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Acenaphthylene	ND		38	pg/Kg-dry	10	12/3/2013 12:39 PM
Anthracene	140		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(a)anthracene	520		38	µg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(a)pyrene	310		3 8	μg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(b)fluoranthene	500		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(b-k)fluoranthene	590		76	μg/Kg-dry	10	12/3/2013 12;39 PM
Benzo(e)pyrene	230		110	µg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(g,h,i)perylene	170		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Benzo(k)fluoranthene	84		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Chrysene	240		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Dibenzo(a,h)anthracene	46		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Fluoranthene	980		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Fluorene	ND		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Indeno(1,2,3-cd)pyrene	170		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Naphthalene	ND		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Phenanthrene	500		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Pyrene	710		38	μg/Kg-dry	10	12/3/2013 12:39 PM
Surr: 2-Fluorobiphenyl	58.0		12-100	%REC	10	12/3/2013 12:39 PM
Surr: 4-Terphenyl-d14	70.0		25-137	%REC	10	12/3/2013 12:39 PM
Surr: Nitrobenzene-d5	48.0		37-107	%REC	10	12/3/2013 12:39 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/1	9/2013 Analyst: CW
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
1,1,2,2-Tetrachioroethane	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
1,1-Dichloroethane	ND		35	µg/Kg-dry	1	11/28/2013 09:24 AM
1.1-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-12 Collection Date: 11/19/2013 11:30 AM

Work Order: 13111254 Lab ID: 13111254-10

Date: 13-Dec-13

Matrix: SOIL

Concellon Date. 11/19/2015 11.50 Alv.					Matrix, 5011	=
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND	•	35	µg/Kg-dry	1	11/28/2013 09:24 AM
1,2-Dichloropropane	ND		3 5	μg/Kg-dry	1	11/28/2013 09:24 AM
2-Butanone	ND		230	μg/Kg-dry	1	11/28/2013 09:24 AM
2-Hexanone	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
4-Methyl-2-pentanone	ND		35	μ g /Kg-dry	1	11/28/2013 09:24 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 09:24 AM
Benzene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Bromodichloromethane	ND		3 5	μg/Kg-dry	1	11/28/2013 09:24 AM
Bromoform	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Bromomethane	ND		87	μg/Kg-dry	1	11/28/2013 09:24 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Carbon tetrachloride	ND		3 5	μg/Kg-dry	1	11/28/2013 09:24 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 09:24 AM
Chloroform	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 09:24 AM
cis-1,2-Dichioroetnene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
cis-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Dibromochloromethane	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Ethylòenzene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
m,p-Xylene	ND		70	μg/Kg-dry	1	11/28/2013 09:24 AM
Methylene chloride	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
o-Xylene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Styrene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Tetrachioroethene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Toluene	ND		35	μg/Kg-dry	1	11/28/2013 0 9:24 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
Vinyl chloride	ND		35	μg/Kg-dry	1	11/28/2013 09:24 AM
1,2-Dichloroethene, Total	ND		70	μg/Kg-dry	1	11/28/2013 09:24 AM
1,3-Dichtoropropene, Total	ND		70	μg/Kg-dry	1	11/28/2013 09:24 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	11/28/2013 09:24 AM
Surr: 1,2-Dichloroethane-d4	98.8		70-130	%REC	1	11/28/2013 09:24 AM
Surr: 4-Bromofluorobenzene	96.4		70-130	%REC	1	11/28/2013 09:24 AM
Surr: Dibromofluoromethane	99.4		70-130	%REC	1	11/28/2013 09:24 AM
Surr: Toluene-d8	98.0		70-130	%REC	1	11/28/2013 09:24 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	14		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample 1D:

Collection Date: 11/19/2013 11:00 AM

SS-13

Work Order: 13111254

Lab ID: 13111254-11

Matrix: SOIL

			HIGHE DVIC						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed			
MERCURY BY CVAA	0.040		SW7471	mg/Kg-dry	Prep Date:	12/3/2013 Analyst: LR 12/4/2013 12:25 PM			
METALS BY ICP-MS			CMCCC		Drop Dotor	42/44/2042 Analysts CEC			
METALS BY ICP-MS Arsenic	29		SW6020		,	12/11/2013 Analyst: CES 12/12/2013 01:28 AM			
Barium	420		1.9	mg/Kg-dry	5	12/12/2013 01:28 AN			
Cadmium	ND		0.77	mg/Kg-dry	ა 5	12/12/2013 01:28 AM			
Chromium	73		1.9	mg/Kg-dry	5 5	12/12/2013 01:28 AN 12/12/2013 01:28 AN			
Lead	98		1.9	mg/Kg-dry	5	12/12/2013 01:28 AN			
Selenium	ND		1.9	mg/Kg-dry	ວ 5				
Silver				mg/Kg-dry	5 5	12/12/2013 01:28 AM			
Silver	ďИ		1.9	mg/Kg-dry	5	12/12/2013 01:28 AM			
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270	M	Prep Date:	11/27/2013 Analyst: HL			
Acenaphthene	ND		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Acenaphthylene	26		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Anthracene	ND		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(a)anthracene	8 1		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(a)pyrene	6 6		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(b)fluoranthene	130		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(b-k)fluoranthene	260		37	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(e)pyrene	61		5 5	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(g,h,i)perylene	48		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Benzo(k)fluoranthene	120		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Chrysene	42		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Dibenzo(a,h)anthracene	ND		18	μ g/ Kg-dry	5	12/3/2013 02:52 AM			
Fluoranthene	66		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Fluorene	ND		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Indeno(1,2,3-cd)pyrene	42		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Naphthalene	ND		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Phenanthrene	ND		18	µg/Kg-dry	5	12/3/2013 02:52 AM			
Pyrene	81		18	μg/Kg-dry	5	12/3/2013 02:52 AM			
Surr: 2-Fluorobiphenyl	82.0		12-100	%REC	5	12/3/2013 02:52 AM			
Surr: 4-Terphenyl-d14	94.0		25-137	%REC	5	12/3/2013 02:52 AM			
Surr: Nitrobenzene-d5	69.0		37-107	%REC	5	12/3/2013 02:52 AM			
VOLATILE ORGANIC COMPOUNDS			SW8260	n E	Pren Date	11/19/2013 Analyst: CW			
1,1,1-Trichloroethane	ND		34	μg/Kg-dry	1	11/28/2013 O8:35 AM			
1,1,2,2-Tetrachloroethane	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 08:35 AM			
1.1.2-Trichloroethane	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 08:35 AM			
1,1-Dichloroethane	ND		34	μg/Kg-dry μg/Kg-dry	1	11/28/2013 08:35 AM			
1,1-Dichloroethene	ND		34	pg/rtg-dry	1	1 1120/2010 00:30 AIV			

Note:

Client: Triad Engineering, Inc.

Johns Manville-Riverside Parcels Project:

SS-13 Sample ID:

Collection Date: 11/19/2013 11:00 AM

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-11

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
1,2-Dichloropropane	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
2-Butanone	ND		230	μg/Kg-dry	1	11/28/2013 08:35 AM
2-Hexanone	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AI
4-Methyl-2-pentanone	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
Acetone	ND		110	μg/Kg-dry	1	11/28/2013 08:35 AI
Benzene	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
Bromodichloromethane	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Bromoform	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Bromomethane	ND		85	μg/Kg-dry	1	11/28/2013 08:35 AN
Carbon disulfide	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Carbon tetrachloride	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
Chlorobenzene	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
Chloroethane	ND		110	μg/Kg-dry	1	11/28/2013 08:35 At
Chloroform	ND		34	μg/Kg-dry	1	11/28/2013 08:35 A
Chloromethane	ND		110	μg/Kg-dry	1	11/28/2013 08:35 AI
cis-1.2-Dichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AI
cis-1,3-Dichloropropene	ND		34	μ g /Kg-dry	1	11/28/2013 08:35 A
Dibromochloromethane	ND		34	μg/Kg-dry	1	11/28/2013 08:35 A
Ethylbenzene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AI
m,p-Xylene	68		68	μg/Kg-dry	1	11/28/2013 08:35 A
Methylene chloride	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
o-Xylene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Styrene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Tetrachloroethene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Toluene	35		34	µg/Kg-dry	1	11/28/2013 08:35 Al
trans-1,2-Dichloroethene	ND		34	µg/Kg-dry	1	11/28/2013 08:35 AM
trans-1,3-Dichloropropene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Trichloroethene	ND		34	μg/Kg-dry	1	11/28/2013 08:35 AM
Vinyl chloride	ND		34	ug/Kg-dry	1	11/28/2013 08:35 AM
1,2-Dichloroethene, Total	ND		68	μg/Kg-dry	1	11/28/2013 08:35 AM
1,3-Dichloropropene, Total	ND		68	µg/Kg-dry	1	11/28/2013 08:35 AM
Xylenes, Total	ND		100	μg/Kg-dry	1	11/28/2013 08:35 A
Surr: 1,2-Dichloroethane-d4	99.2		70-130	%REC	1	11/28/2013 08:35 AI
Surr: 4-Bromofluorobenzene	96.8		70-130	%REC	1	11/28/2013 08:35 AI
Surr: Dibromofluoromethane	99.9		70-130	%REC	1	11/28/2013 08:35 AI
Surr: Toluene-d8	99.0		70-130	%REC	1	11/28/2013 08:35 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	12		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-14

Collection Date: 11/20/2013 10:20 AM

Work Order: 13111254

Lab ID: 13111254-12

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	ı	Prep Date:	12/3/2013 Analyst: LR
Mercury	0.24		0.020	mg/Kg-dry	1	12/4/2013 12:35 PM
METALS BY ICP-MS			SW6020)A	Prep Date:	12/11/2013 Analyst: CES
Arsenic	19		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
Barium	240		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
Cadmium	ND		1.2	mg/Kg-dry	5	12/12/2013 01:33 AM
Chromium	28		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
Lead	53		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
Selenium	ND		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
Silver	ND		2.9	mg/Kg-dry	5	12/12/2013 01:33 AM
SEMI-VOLATILE ORGANIC COMPOUND	OS - SIM		SW8270)M	Prep Date:	11/27/2013 Analyst: HL
Acenaphthene	ND		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Acenaphthylene	43		24	µg/Kg-dry	5	12/3/2013 03:26 AM
Anthracene	41		24	µg/Kg-dry	5	12/3/2013 03:26 AM
Benzo(a)anthracene	310		24	µg/Kg-dry	5	12/3/2013 03:26 AM
Велzo(a)pyrene	220		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Велzo(b)fluoranthene	360		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Benzo(b-k)fluoranthene	430		48	μg/Kg-dry	5	12/3/2013 03:26 AM
Benzo(e)pyrene	180		72	μg/Kg-dry	5	12/3/2013 03:26 AM
Benzo(g,h,i)perylene	130		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Benzo(k)fluoranthene	67		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Chrysene	170		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Dibenzo(a,h)anthracene	34		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Fluoranthene	360		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Fluorene	ND		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Indeno(1,2,3-cd)pyrene	120		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Naphthalene	ND		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Phenanthrene	130		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Pyrene	320		24	μg/Kg-dry	5	12/3/2013 03:26 AM
Surr: 2-Fluorobiphenyl	80.0		12-100	%REC	5	12/3/2013 03:26 AM
Surr: 4-Terphenyl-d14	94.0		25-137	%REC	5	12/3/2013 03:26 AM
Surr: Nitrobenzene-d5	66.0		37-107	%REC	5	12/3/2013 03:26 AM
VOLATILE ORGANIC COMPOUNDS			SW8260)B	Prep Date:	11/19/2013 Analyst: AK
1,1,1-Trichloroethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1,1,2,2-Tetrachloroethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1,1,2-Trichloroethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1,1-Dichloroethane	NĐ		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1.1-Dichloroethene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-14

Collection Date: 11/20/2013 10:20 AM

Work Order: 13111254

Lab ID: 13111254-12

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dìchloroethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1,2-Dichloropropane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
2-Butanone	ND		290	µg/Kg-dry	1	11/28/2013 12:03 PM
2-Hexanone	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
4-Methyl-2-pentanone	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Acetone	ND		150	µg/Kg-dry	1	11/28/2013 12:03 PM
Benzene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Bromodichioromethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Bromoform	· ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Bromomethane	ND		110	μg/Kg-dry	1	11/28/2013 12:03 PM
Carbon disulfide	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Carbon tetrachloride	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Chlorobenzene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Chloroethane	ND		150	μg/Kg-dry	1	11/28/2013 12:03 PM
Chloroform	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Chloromethane	ND		150	μg/Kg-dry	1	11/28/2013 12:03 PM
cis-1,2-Dichloroethene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
cis-1,3-Dichloropropene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Dibromochloromethane	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Ethylbenzene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
m,p-Xylene	ND		87	μg/Kg-dry	1	11/28/2013 12:03 PM
Methylene chloride	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
o-Xylene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Styrene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Tetrachloroethene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Toluene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
trans-1,2-Dichioroethene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
trans-1,3-Dichloropropene	ND		44	μg/Kg-d <i>r</i> y	1	11/28/2013 12:03 PM
Trichloroethene	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
Vinyl chloride	ND		44	μg/Kg-dry	1	11/28/2013 12:03 PM
1,2-Dichloroethene, Total	ND		87	μg/Kg-d <i>r</i> y	1	11/28/2013 12:03 PM
1,3-Dichloropropene, Total	ND		87	μg/Kg-dry	1	11/28/2013 12:03 PM
Xylenes, Total	ND		130	μg/Kg-dry	1	11/28/2013 12:03 PM
Surr: 1,2-Dichloroethane-d4	104		70-130	%REC	1	11/28/2013 12:03 PM
Surr: 4-Bromofluorobenzene	101		70-130	%REC	1	11/28/2013 12:03 PM
Surr: Dibromofluoromethane	101		70-130	%REC	1	11/28/2013 12:03 PM
Surr: Toluene-d8	105		70-130	%REC	1	11/28/2013 12:03 PM
MOISTURE			A2540	G		Analyst: MEB
Moisture	31		0.050	% of same	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-15

Collection Date: 11/20/2013 11:00 AM

Work Order: 13111254

Lab ID: 13111254-13

Matrix: SOIL

Concetton Date: 10/20/2015 11:00 7/10		Matrix. SOIL						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed	
MERCURY BY CVAA			SW747		•	12/3/2013	Analyst: LR	
Mercury	0.38		0.034	mg/Kg-dry	2		12/4/2013 12:45 PM	
METALS BY ICP-MS			SW602	A0	Prep Date:	12/11/2013	3 Analyst: CES	
Arsenic	19		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
Barium	190		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
Cadmium	3.2		1.0	mg/Kg-dry	5		12/12/2013 01:39 AM	
Chromium	57		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
Lead	130		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
Selenium	ND		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
Silver	ND		2.6	mg/Kg-dry	5		12/12/2013 01:39 AM	
SEMI-VOLATILE ORGANIC COMPOUND	IS - SIM		SW827	οм	Prep Date:	12/2/2013	Analyst: HL	
Acenaphthene	ND - OIII		44	μg/Kg-dry	10p Bate.		12/3/2013 10:52 AM	
Acenaphthylene	ND		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Anthracene	ND		4 4	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(a)anthracene	240		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(a)pyrene	160		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(b)fluoranthene	210		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(b-k)fluoranthene	320		88	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(e)pyrene	ND		130	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(g,h,i)perylene	100		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Benzo(k)fluoranthene	110		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Chrysene	120		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Dibenzo(a,h)anthracene	ND		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Fluoranthene	250		44	µg/Kg∗dry	10		12/3/2013 10:52 AM	
Fluorene	ND.		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Indeno(1,2,3-cd)pyrene	100		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Naphthaiene	ND		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Phenanthrene	92		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Pyrene	200		44	μg/Kg-dry	10		12/3/2013 10:52 AM	
Surr: 2-Fluorobiphenyl	74.0		12-100	%REC	10		12/3/2013 10:52 AM	
Surr: 4-Terphenyl-d14	92.0		25-137	%REC	10		12/3/2013 10:52 AM	
Surr: Nitrobenzene-d5	58.0		37-107	%REC	10		12/3/2013 10:52 AM	
NOLATILE ORGANIC COMPOLINGS			Chainea		Drop Date:	44400004	Angles-trates	
VOLATILE ORGANIC COMPOUNDS 1.1.1-Trichloroethane	ND		SW826 41		•	11/19/2013	8 – Analyst: AK 11/28/2013 12:27 PM	
	ND ND		41	μg/Kg-dry	1 1			
1,1,2,2-Tetrachloroethane				μg/Kg-dry			11/28/2013 12:27 PM	
1,1,2-Trichloroethane	ND ND		41	μg/Kg-dry	1		11/28/2013 12:27 PM	
1,1-Dichloroethane	ND		41	μg/Kg-dry	1		11/28/2013 12:27 PM	
1,1-Dichloroethene	ND		41	μg/Kg-dry	1		11/28/2013 12:27 PM	

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-15

Collection Date: 11/20/2013 11:00 AM

Work Order: 13111254

Lab ID: 13111254-13

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
1.2-Dichloropropane	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
2-Butanone	ND		270	μg/Kg-dry	1	11/28/2013 12:27 PM
2-Hexanone	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
4-Methyl-2-pentanone	ND		41	µg/Kg-dry	1	11/28/2013 12:27 PM
Acetone	ND		140	μg/Kg-dry	1	11/28/2013 12:27 PM
Benzene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Bromodichloromethane	ND		41	μg/K g -dry	1	11/28/2013 12:27 PM
Bromoform	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Bromomethane	ND		100	μg/Kg-dry	1	11/28/2013 12:27 PM
Carbon disulfide	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Carbon tetrachloride	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Chlorobenzene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Chloroethane	ND		140	μg/Kg-dry	1	11/28/2013 12:27 PM
Chloroform	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PN
Chloromethane	ND		140	μg/Kg-dry	1	11/28/2013 12:27 PM
cis-1.2-Dichioroethene	ND		41	µg/Kg-dry	1	11/28/2013 12:27 PN
cis-1,3-Dichloropropene	ND		41	µg/Kg-dry	1	11/28/2013 12:27 PM
Dibromochloromethane	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Ethylbenzene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
m,p-Xylene	ND		81	μg/Kg-dry	1	11/28/2013 12:27 PM
Methylene chloride	ND		41	µg/Kg-dry	1	11/28/2013 12:27 PN
o-Xylene	ND		41	µg/Kg-dry	1	11/28/2013 12:27 PM
Styrene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PN
Tetrachloroethene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Toluene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
trans-1,2-Dichloroethene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
trans-1,3-Dichloropropene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Trichloroethene	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
Vinyl chloride	ND		41	μg/Kg-dry	1	11/28/2013 12:27 PM
1,2-Dichloroethene, Total	ND		81	μg/Kg-dry	1	11/28/2013 12:27 PM
1,3-Dichloropropene, Total	ND		81	μg/Kg-dry	1	11/28/2013 12:27 PM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 12:27 PM
Surr: 1,2-Dichloroethane-d4	108		70-130	%REC	1	11/28/2013 12:27 PM
Surr: 4-Bromofluorobenzene	98.2		70-130	%REC	1	11/28/2013 12:27 PN
Surr: Dibromofiuoromethane	101		70-130	%REC	1	11/28/2013 12:27 PM
Surr: Toluene-d8	105		70-130	%REC	1	11/28/2013 12:27 PM
MOISTURE			A2540	G		Analyst: MEB
Moisture	26		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-16

Collection Date: 11/20/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-14

Matrix: SOIL

Collection Date: 11/20/2013 03:00 PM		Matrix: SOIL					
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed	
MERCURY BY CVAA			SW747	1	Prep Date: 12/3/2013	Analyst: LR	
Mercury	0.23		0.017	mg/Kg-dry	1	12/4/2013 12:47 PM	
METALS BY ICP-MS			SW602	0A	Prep Date: 12/11/201	3 Analyst: CES	
Arsenic	12		2.2	mg/Kg-dry	•	12/12/2013 01:44 AM	
Barium	170		2,2	mg/Kg-dry	5	12/12/2013 01:44 AM	
Cadmium	1.2		0.87	mg/Kg-dry	5	12/12/2013 01:44 AM	
Chromium	2 5		2.2	mg/Kg-dry	5	12/12/2013 01:44 AM	
Lead	36		2.2	mg/Kg-dry	5	12/12/2013 01:44 AM	
Selenium	ND		2.2	mg/Kg-dry	5	12/12/2013 01:44 AM	
Silver	ND		2.2	mg/Kg-dry	5	12/12/2013 01:44 AM	
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	0M	Prep Date: 12/2/2013	Analyst: HL	
Acenaphthene	ND.		3.9	pg/Kg-dry	1	12/3/2013 11:25 AM	
Acenaphthylene	4.6		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Anthracene	5.0		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(a)anthracene	34		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(a)pyrene	24		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(b)fluoranthene	41		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(b-k)fluoranthene	49		7.7	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(e)pyrene	20		12	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(g,h,i)perylene	17		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Benzo(k)fluoranthene	7.7		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Chrysene	18		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Dibenzo(a,h)anthracene	3.9	J	3.9	μg/Kg-dry	. 1	12/3/2013 11:25 AM	
Fluoranthene	39		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Fłuorene	ND		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Indeno(1,2,3-cd)pyrene	16		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Naphthalene	4.2		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Phenanthrene	18		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Pyrene	32		3.9	μg/Kg-dry	1	12/3/2013 11:25 AM	
Surr: 2-Fluorobiphenyl	72.8		12-100	%REC	1	12/3/2013 11:25 AM	
Surr: 4-Terphenyl-d14	91.0		25-137	%REC	1	12/3/2013 11:25 AM	
Surr: Nitrobenzene-d5	69.8		37-107	%REC	1	12/3/2013 11:25 AM	
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/19/201	3 Analyst: AK	
1,1,1-Trichloroethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM	
1,1,2,2-Tetrachloroethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM	
1,1,2-Trichloroethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM	
1,1-Dichloroethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM	
1,1-Dichloroethene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM	

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SS-16

Collection Date: 11/20/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-14

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND	-	35	µg/Кg-dту	1	11/29/2013 12:42 PM
1,2-Dichloropropane	ND		35	µg/Kg-dry	1	11/29/2013 12:42 PM
2-Butanone	ND		230	μg/Kg-dη⁄	1	11/29/2013 12:42 PM
2-Hexanone	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
4-Methyl-2-pentanone	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Acetone	ND		120	μg/Kg-dry	1	11/29/2013 12:42 PM
Benzene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Bromoform	ND		3 5	μg/Kg-dry	1	11/29/2013 12:42 PM
Bromomethane	ND		88	μg/Kg-dry	1	11/29/2013 12:42 PM
Carbon disulfide	ND		35	µg/Kg-dry	1	11/29/2013 12:42 PM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Chlorobenzene	N D		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Chloroethane	ND		120	μg/Kg-dry	1	11/29/2013 12:42 PM
Chiaroform	ND		35	µg/Kg-dry	1	11/29/2013 12:42 PM
Chloromethane	ND		120	μg/Kg-dry	1	11/29/2013 12:42 PM
cis-1.2-Dichloroethene	ND		35	µg/Kg-ary	1	11/29/2013 12:42 PM
cis-1,3-Dichloropropene	ND		35	ug/kg-dry	1	11/29/2013 12:42 PM
Dibromochloromethane	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Ethylbenzene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
m,p-Xylene	ND		70	μg/Kg-dry	1	11/29/2013 12:42 PM
Methylene chloride	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
o-Xylene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Styrene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Tetrachloroethene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Toluene	64		35	µg/Kg-dry	1	11/29/2013 12:42 PM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/29/2013 12:42 PM
Trichloroethene	ND		3 5	μg/Kg-dry	1	11/29/2013 12:42 PM
Vinyl chloride	N D		35	μg/Kg-dry	1	11/29/2013 12:42 PM
1,2-Dichloroethene, Total	ND		70	μg/Kg-dry	1	11/29/2013 12:42 PM
1,3-Dichloropropene, Total	ND		70	μg/Kg-dry	1	11/29/2013 12:42 PM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/29/2013 12:42 PM
Surr: 1,2-Dichloroethane-d4	103		70-130	%REC	1	11/29/2013 12:42 PM
Surr: 4-Bromofluorobenzene	98.2		70-130	%REC	1	11/29/2013 12:42 PM
Surr: Dibromofluoromethane	95.6		70-130	%REC	1	11/29/2013 12:42 PM
Surr: Toluene-d8	106		70-130	%REC	1	11/29/2013 12:42 PM
MOISTURE			A2540	G		Analyst: MEB
Moisture	15		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/19/2013 01:00 PM

Work Order: 13111254

Lab ID: 13111254-15

Matrix: SOIL

Confection Date: 11/19/2013 01:00 1 W		Matrix, 501L							
Anałyses	Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed		
MERCURY BY CVAA Mercury	0.032		SW 747 0.017	1 mg/Kg-dry	Prep Date:		Analyst: LR 12/4/2013 12:50 PM		
METALS BY ICP-MS			SW602	0A	Prep Date:	11/26/2013	Analyst: ML		
Arsenic	9.2		2.5	mg/Kg-dry	5		11/27/2013 03:16 AM		
Barium	190		2.5	mg/Kg-dry	5		11/27/2013 03:16 AM		
Cadmium	ND		0.99	mg/Kg-dry	5		11/27/2013 03:16 AM		
Chromium	18		2.5	mg/Kg-dry	5		11/27/2013 03:16 AM		
Lead	15		2,5	mg/Kg-dry	5		11/27/2013 03:16 AM		
Selenium	ND		2.5	mg/Kg-dry	5		11/27/2013 03:16 AM		
Silver	ND		2.5	mg/Kg-dry	5		11/27/2013 03:16 AM		
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	OΜ	Prep Date:	12/2/2013	Analyst: HL		
Acenaphthene	ND ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Acenaphthylene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Anthracene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(a)anthracene	ND		4.0	µg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(a)pyrene	ND		4.0	µg/Ko-dry	1		12/3/2013 11:58 AM		
Benzo(b)fluoranthene	ND		4.0	µg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(b-k)fiuoranthene	ND		8.1	μg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(e)pyrene	ND		12	μg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(g,h,i)perylene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Benzo(k)fluoranthene	NĐ		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Chrysene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Dibenzo(a,h)anthracene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Fluoranthene	ND		4.0	μg/Kg-dry	1	4	12/3/2013 11:58 AM		
Fluorene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Indeno(1,2,3-cd)pyrene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Naphthalene	ND		4.0	μg/Kg-dry	1		12/3/2013 11:58 AM		
Phenanthrene	ND		4.0	μg/Kg-dry	1	•	12/3/2013 11:58 AM		
Pyrene	ND		4.0	μg/Kg-dry	1	1	12/3/2013 11:58 AM		
Surr: 2-Fluorobiphenyl	70.4		12-100	%REC	1		12/3/2013 11:58 AM		
Surr: 4-Terphenyl-d14	98.4		25-137	%REC	1	•	12/3/2013 11:58 AM		
Surr: Nitrobenzene-d5	68.4		37-107	%REC	1		12/3/2013 11:58 AM		
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date:	11/19/2013	Analyst: CW		
1,1,1-Trichloroethane	ND		37	μg/Kg-dry	1		11/28/2013 10:13 AM		
1,1,2,2-Tetrachioroethane	ND		37	μg/Kg-dry	1		11/28/2013 10:13 AM		
1,1,2-Trichloroethane	ND		37	μg/Kg-dry	1		11/28/2013 10:13 AM		
1,1-Dichloroethane	ND		37	μg/Kg-dry	1		11/28/2013 10:13 AM		
1,1-Dichioroethene	ND		37	μg/Kg-dry	1		11/28/2013 10:13 AM		

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/19/2013 01:00 PM

SB-2

Work Order: 13111254

Lab ID: 13111254-15

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed		
1,2-Dichloroethane	ND		37	µg/Kg-dry	1	11/28/2013 10:13 AN		
1,2-Dichloropropane	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
2-Butanone	ND		250	μg/Kg-dry	1	11/28/2013 10:13 AN		
2-Hexanone	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
4-Methyl-2-pentanone	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
Acetone	ND		120	μg/Kg-ary	1	11/28/2013 10:13 AN		
Benzene	ND		37	μ g /Kg-dry	1	11/28/2013 10:13 AN		
Bromodichloromethane	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Bromoform	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
Bromomethane	ND		93	μg/Kg-dry	1	11/28/2013 10:13 AN		
Carbon disulfide	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Carbon tetrachioride	ND		37	μα/Kg-dry	1	11/28/2013 10:13 AN		
Chlorobenzene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Chloroethane	ND		120	µg/Kg-ary	1	11/28/2013 10:13 AN		
Chloroform	ND		37	µg/Kg-dry	1	11/28/2013 10:13 AM		
Chioromethane	ND		120	μg/Kg-dry	1	11/28/2013 10:13 AM		
cis-1,2-Dichloroetnene	ND		37	µg/Kg-dry	1	11/28/2013 10:13 AM		
cis-1,3-Dichloropropene	ND		37	µg/Kg-dry	1	11/28/2013 10:13 AN		
Dipromochloromethane	N D		37	µg/Kg-dry	1	11/28/2013 10:13 AM		
Ethylbenzene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
m,p-Xylene	ND		74	µg/Kg-dry	1	11/28/2013 10:13 AN		
Methylene chloride	ND		37	µg/Kg-dry	1	11/28/2013 10:13 AM		
o-Xylene	N D		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Styrene	N D		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
Tetrachloroethene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
Toluene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
trans-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AM		
trans-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Trichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
Vinyl chloride	ND		37	μg/Kg-dry	1	11/28/2013 10:13 AN		
1,2-Dichloroethene, Total	ND		74	μg/Kg-dry	1	11/28/2013 10:13 AN		
1,3-Dichloropropene, Total	ND		74	μg/Kg-dry	1	11/28/2013 10:13 AN		
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 10:13 AN		
Surr: 1,2-Dichloroethane-d4	97.0		70-130	%REC	1	11/28/2013 10:13 AM		
Surr: 4-Bromofluorobenzene	96.1		70-130	%REC	1	11/28/2013 10:13 AN		
Surr: Dibromofluoromethane	98.7		70-130	%REC	1	11/28/2013 10:13 AM		
Surr: Toluene-d8	99.5		70-130	%REC	1 .	11/28/2013 10:13 AN		
OISTURE			A2540	G		Analyst: MEB		
Moisture	19		0.050	% of samp	ole 1	11/26/2013 12:25 PM		

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/20/2013 09:30 AM

Work Order: 13111254

Lab ID: 13111254-16

Matrix: SOIL

		MARITA, BOIL						
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed		
MERCURY BY CVAA			SW7471		Prep Date:	12/3/2013 Analyst: LR		
Mercury	0.42		0.037	mg/Kg-dry	2	12/4/2013 04:41 PM		
METALS BY ICP-MS			SW6020)A	Prep Date:	11/26/2013 Analyst: ML		
Агѕепіс	26		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
Barium	180		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
Cadmium	6.4		1.3	mg/Kg-dry	5	11/27/2013 03:22 AN		
Chromium	94		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
Lead	200		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
Selenium	3.6		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
Silver	ND		3.1	mg/Kg-dry	5	11/27/2013 03:22 AN		
SEMI-VOLATILE ORGANIC COMPOUNT	S - SIM		SW8270	M	Prep Date:	12/2/2013 Analyst: HL		
Acenaphthene	ND		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Acenaphthylene	ND		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Anthracene	ND		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(a)anthracene	120		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(a)pyrene	79		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(b)fluoranthene	120		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(b-k)fluoranthene	160		51	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(e)pyrene	ND		76	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(g,h,i)perylene	41		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Benzo(k)fluoranthene	36		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Chrysene	89		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Dibenzo(a,h)anthracene	ND		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Fluoranthene	160		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Fluorene	ND		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Indeno(1,2,3-cd)pyrene	43		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Naphthalene	25		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Phenanthrene	97		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Pyrene	130		25	μg/Kg-dry	5	12/3/2013 06:05 PM		
Surr: 2-Fluorobiphenyl	68.0		12-100	%REC	5	12/3/2013 06:05 PM		
Surr: 4-Terphenyl-d14	88.0		25-137	%REC	5	12/3/2013 06:05 PM		
Surr: Nitrobenzene-d5	69.0		37-107	%REC	5	12/3/2013 06:05 PM		
VOLATILE ORGANIC COMPOUNDS			SW8260	В	Prep Date:	11/19/2013 Analyst: AK		
1,1,1-Trichloroethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AN		
1,1,2,2-Tetrachloroethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM		
1,1,2-Trichloroethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM		
1,1-Dichloroethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM		
1.1-Dichloroethene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM		

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-3

D: SB-

Collection Date: 11/20/2013 09:30 AM

Work Order: 13111254

Lab ID: 13111254-16

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
1.2-Dichloropropane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
2-Butanone	ND		310	μg/Kg-dry	1	11/28/2013 09:38 AM
2-Hexanone	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
4-Methyl-2-pentanone	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Acetone	N D		160	μg/Kg-dry	1	11/28/2013 09:38 AM
Benzene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Bromodichloromethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Bromoform	N D		4 7	μg/Kg-dry	1	11/28/2013 09:38 AM
Bromomethane	ND		120	μg/Kg-dry	1	11/28/2013 09:38 AM
Carbon disulfide	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Carbon tetrachloride	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Chlorobenzene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Chloroethane	ND		16 0	μg/Kg-dry	1	11/28/2013 09:38 AM
Chloroform	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Chloromethane	ND		160	μg/Kg-dry	1	11/28/2013 09:38 AM
cis-1.2-Dichloroethene	ND		47	µg/Kg-dry	4	11/28/2013 09:38 AM
cis-1,3-Dichloropropene	ND		47	µg/Kg-dry	1	11/28/2013 09:38 AM
Dibromochioromethane	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AN
Ethylbenzene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
m,p-Xylene	110		93	μg/Kg-dry	1	11/28/2013 09:38 AM
Methylene chloride	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
o-Xylene	76		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Styrene	N D		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Tetrachloroethene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Toluene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
trans-1,2-Dichloroethene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
trans-1,3-Dichloropropene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Trichloroethene	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
Vinyl chloride	ND		47	μg/Kg-dry	1	11/28/2013 09:38 AM
1,2-Dichloroethene, Total	ND		93	μg/Kg-dry	1	11/28/2013 09:38 AM
1,3-Dichioropropene, Total	ND		93	μg/Kg-dry	1	11/28/2013 09:38 AM
Xylenes, Total	180		140	μg/Kg-dry	1	11/28/2013 09:38 AM
Surr: 1,2-Dichloroethane-d4	105		70-130	%REC	1	11/28/2013 09:38 AM
Surr: 4-Bromofluorobenzene	99,0		70-130	%REC	1	11/28/2013 09:38 AM
Surr: Dibromofiuoromethane	98.0		70-130	%REC	1	11/28/2013 09:38 AM
Surr: Toluene-d8	104		70-130	%REC	1	11/28/2013 09:38 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	36		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample 1D:

SB-4

Collection Date: 11/19/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-17

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471	l	Prep Date: 12/	.,
Mercury	0.037		0.018	mg/Kg-dry	1	12/4/2013 12:55 PM
METALS BY ICP-MS			SW6020	DΑ	Prep Date: 11/	26/2013 Analyst: ML
Arsenic	13		2,5	mg/Kg-dry	5	11/27/2013 03:47 AM
Barium	220		2.5	mg/Kg-dry	5	11/27/2013 03:47 AM
Cadmium	ND		1.0	mg/Kg-dry	5	11/27/2013 03:47 AM
Chromium	27		2.5	mg/Kg-dry	5	11/27/2013 03:47 AM
Lead	24		2.5	mg/Kg-dry	5	11/27/2013 03:47 AM
Selenium	ND		2.5	mg/Kg-dry	5	11/27/2013 03:47 AM
Silver	ND		2.5	mg/Kg-dry	5	11/27/2013 03:47 AM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW8270)M	Prep Date: 12/	2/2013 Analyst: HL
Acenaphthene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Acenaphthylene	ND		4,4	μg/Kg-dry	1	12/3/2013 12:32 PM
Anthracene	ND		4.4	μα/Kα-dry	1	12/3/2013 12:32 PM
Benzo(a)anthracene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(a)pyrene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(b)fluoranthene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(b-k)fluoranthene	ND		8.9	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(e)pyrene	ND		13	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(g,h,i)perylene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Benzo(k)fluoranthene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Chrysene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Dibenzo(a,h)anthracene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Fluoranthene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Fiuorene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Indeno(1,2,3-cd)pyrene	ND		4.4	µg/Kg-dry	1	12/3/2013 12:32 PM
Naphthalene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Phenanthrene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Pyrene	ND		4.4	μg/Kg-dry	1	12/3/2013 12:32 PM
Surr: 2-Fluorobiphenyl	70.6		12-100	%REC	1	12/3/2013 12:32 PM
Surr: 4-Terphenyl-d14	96.4		25-137	%REC	1	12/3/2013 12;32 PM
Surr: Nitrobenzene-d5	71.2		37-107	%REC	1	12/3/2013 12:32 PM
OLATILE ORGANIC COMPOUNDS			SW8260)B	Prep Date: 11/	19/2013 Analyst: CW
1,1,1-Trichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 11:50 AM
1,1,2,2-Tetrachloroethane	ND		40	μg/Kg-dry	1	11/28/2013 11:50 AM
1,1,2-Trichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 11:50 AM
1,1-Dichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 11:50 AM
1,1-Dichloroethene	ND		40	μg/Kg-dry	1	11/28/2013 11:50 AM

Date: 13-Dec-13

Lab ID: 13111254-17

Work Order: 13111254

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-4

Collection Date: 11/19/2013 03:00 PM

Matrix: SOIL

Report Dilution Result Analyses Qual Limit Units Date Analyzed Factor 1,2-Dichloroethane ND 40 µg/Kg-dry 1 11/28/2013 11:50 AM 1.2-Dichloropropane ND 40 1 11/28/2013 11:50 AM µg/Kg-dry µg/Kg-dry 2-Butanone ND 270 1 11/28/2013 11:50 AM 2-Hexanone ND 40 11/28/2013 11:50 AM µg/Kg-dry 4-Methyl-2-pentanone ND 40 11/28/2013 11:50 AM µg/Kg-dry Acetone ND 130 µg/Kg-dry 1 11/28/2013 11:50 AM ND Benzene 40 µg/Kg-dry 11/28/2013 11:50 AM ND Bromodichioromethane 40 11/28/2013 11:50 AM µg/Kg-dry ND 40 11/28/2013 11:50 AM Bromoform μg/Kg-dry Bromomethane ND 100 11/28/2013 11:50 AM μg/Kg-dry Carbon disulfide ND 40 11/28/2013 11:50 AM μg/Kg-dry Carbon tetrachloride ND 40 11/28/2013 11:50 AM μg/Kg-dry Chłorobenzene ND 40 µg/Kg-dry 11/28/2013 11:50 AM Chloroethane ND 130 µg/Kg-dry 11/28/2013 11:50 AM Chloroform ND 40 µg/Kg-dry 11/28/2013 11:50 AM Chloromethane ND 130 µg/Kg-dry 11/28/2013 11:50 AM cis-1,2-Dichloroethene ND 40 µg/Kg-dry 11/28/2013 11:50 AM cis-1,3-Dichloropropene ND 40 µg/Kg-dry 11/28/2013 11:50 AM Dibromochloromethane ND 40 μg/Kg-dry 11/28/2013 11:50 AM Ethylbenzene ND 40 µg/Kg-dry 11/28/2013 11:50 AM m,p-Xylene ND 80 µg/Kg-dry 11/28/2013 11:50 AM Methylene chloride ND 40 µg/Kg-dry 11/28/2013 11:50 AM o-Xylene ND 40 µg/Kg-dry 11/28/2013 11:50 AM Styrene ND 40 μg/Kg-dry 11/28/2013 11:50 AM Tetrachloroethene ND 40 μg/Kg-dry 11/28/2013 11:50 AM Toluene ND 40 μg/Kg-dry 11/28/2013 11:50 AM trans-1,2-Dichloroethene ND 40 μg/Kg-dry 11/28/2013 11:50 AM trans-1,3-Dichloropropene ND 40 11/28/2013 11:50 AM µg/Kg-dry ND 11/28/2013 11:50 AM Trichloroethene 40 μg/Kg-dry Vinyl chloride ND 40 μg/Kg-dry 11/28/2013 11:50 AM 1,2-Dichloroethene, Total ND 80 μg/Kg-dry 11/28/2013 11:50 AM ND 1,3-Dichloropropene, Total 80 μg/Kg-dry 11/28/2013 11:50 AM ND Xylenes, Total 120 μg/Kg-dry 11/28/2013 11:50 AM Surr: 1,2-Dichloroethane-d4 97.4 70-130 %REC 11/28/2013 11:50 AM

70-130

70-130

70-130

0.050

A2540 G

%REC

%REC

%REC

% of sample

1

See Qualifiers page for a list of qualifiers and their definitions. Note:

96.3

98.4

97.9

25

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Sum: Toluene-d8

MOISTURE

Moisture

11/28/2013 11:50 AM

11/28/2013 11:50 AM

11/28/2013 11:50 AM

Analyst: MEB

11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-5

Collection Date: 11/19/2013 02:00 PM

Work Order: 13111254

Lab ID: 13111254-18

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/3	
Mercury	0.034		0.018	mg/Kg-dry	1	12/4/2013 12:57 PM
METALS BY ICP-MS			SW602	0 A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	10		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
Barium	150		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
Cadmium	ND		0.89	mg/Kg-dry	5	11/27/2013 03:53 AM
Chromium	18		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
Lead	17		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
Selenium	ND		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
Silver	ND		2.2	mg/Kg-dry	5	11/27/2013 03:53 AM
SEMI-VOLATILE ORGANIC COMPOU	NDS - SIM		SW827	ОМ	Prep Date: 12/2	2/2013 Analyst: H L
Acenaphthene	ND ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Acenaphthylene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Anthracene	N D		4.0	μg/Kg-ary	1	12/3/2013 01:05 PM
Benzo(a)anthracene	N D		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(a)pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(b)fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(b-k)fluoranthene	ND		8.1	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(g.h,i)perylene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Benzo(k)fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Chrysene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Dibenzo(a,h)anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Fluorene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
indeno(1,2,3-cd)pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Naphthalene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Phenanthrene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 01:05 PM
Surr: 2-Fluorobiphenyl	71.6		12-100	%REC	1	12/3/2013 01:05 PM
Surr: 4-Terphenyl-d14	99.4		25-137	%REC	1	12/3/2013 01:05 PM
Surr: Nitrobenzene-d5	73.8		37-107	%REC	1	12/3/2013 01:05 PM
OLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/1	19/2013 Analyst: CW
1.1.1-Trichloroethane	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
1,1,2,2-Tetrachloroethane	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
1,1,2-Trichloroethane	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AM
1.1-Dichloroethane	ND		37	ug/Kg-dry	1	11/28/2013 11:01 AM
1.1-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-5

Collection Date: 11/19/2013 02:00 PM

Work Order: 13111254

Lab 1D: 13111254-18

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AN
1,2-Dichloropropane	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
2-Butanone	ND		250	μg/Kg-dry	1	11/28/2013 11:01 AN
2-Hexanone	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AM
4-Methyl-2-pentanone	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AM
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 11:01 AM
Вепzепе	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AM
Bromodichloromethane	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
Bromoform	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AM
Bromomethane	ND		93	µg/Kg-dry	1	11/28/2013 11:01 AN
Carbon disulfide	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
Carbon tetrachloride	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
Chlorobenzene	ND		37	µg/Kg-dry	1	11/28/2013 11:01 AN
Chloroethane	ND		120	μ g/ Kg-dry	1	11/28/2013 11:01 AM
Chloroform	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
Chłoromethane	ND		120	μg/Kg-dry	1	11/28/2013 11:01 AM
cis-1.2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
cis-1.3-Dichloropropene	ND		37	μg/Kg-öry	1	11/28/2013 11:01 AM
Dibromochloromethane	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
Ethylbenzene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
m,p-Xylene	ND		75	μg/Kg-dry	1	11/28/2013 11:01 AM
Methylene chloride	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
o-Xylene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
Styrene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
Tetrachioroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
Toluene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
trans-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AM
trans-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
Trichloroethene	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
Vinyl chloride	ND		37	μg/Kg-dry	1	11/28/2013 11:01 AN
1,2-Dichloroethene, Total	ND		75	μg/Kg-dry	1	11/28/2013 11:01 AM
1,3-Dichloropropene, Total	ND		75	μg/Kg-dry	1	11/28/2013 11:01 AN
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 11:01 AN
Surr: 1,2-Dichloroethane-d4	98.0		70-130	%REC	1	11/28/2013 11:01 AM
Surr: 4-Bromofluorobenzene	96.2		70-130	%REC	1	11/28/2013 11:01 AM
Surr: Dibromofluoromethane	97.6		70-130	%REC	1	11/28/2013 11:01 AM
Surr: Toluene-d8	99.8		70-130	%REC	1	11/28/2013 11:01 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	19		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-6

Work Order: 13111254 Lab ID: 13111254-19

Collection Date: 11/20/2013 03:35 PM

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/ 3	3/2013 Analyst: LR
Мегсигу	0.041		0.019	mg/Kg-dry	1	12/4/2013 01:00 PM
METALS BY ICP-MS			SW602	0 A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	9.6		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
Barium	230		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
Cadmium	ND		1.0	mg/Kg-dry	5	11/27/2013 03:59 AM
Chromium	22		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
Lead	21		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
Selenium	ND		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
Silver	ND		2.5	mg/Kg-dry	5	11/27/2013 03:59 AM
SEMI-VOLATILE ORGANIC COMPOUN	IDS - SIM		SW827	OM	Prep Date: 12/2	2/2013 Analyst: HL
Acenaphthene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Acenaphthylene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Anthracene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(a)anthracene	5.6		4.3	ug/Kg-dry	1	12/3/2013 01:38 PM
Benzo(a)pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(b)fluoranthene	4.7		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(b-k)fiuoranthene	ND		8.6	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(e)pyrene	ND		13	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(g,h,i)perylene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Benzo(k)fluoranthene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Chrysene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Dibenzo(a,h)anthracene	ND		4.3	µg/Kg-dry	1	12/3/2013 01:38 PM
Fluoranthene	4.7		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Fluorene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
indeno(1,2,3-cd)pyrene	ND		4.3	µg/Kg-dry	1	12/3/2013 01:38 PM
Naphthalene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Phenanthrene	ND		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Pyrene	4.7		4.3	μg/Kg-dry	1	12/3/2013 01:38 PM
Surr: 2-Fluorobiphenyl	69.6		12-100	%REC	1	12/3/2013 01:38 PM
Surr: 4-Terphenyl-d14	102		25-137	%REC	1	12/3/2013 01:38 PM
Surr: Nitrobenzene-d5	69.8		37-107	%REC	1	12/3/2013 01:38 PM
VOLATILE ORGANIC COMPOUNDS			SW8260	В	Prep Date: 11/1	19/2013 Analyst: AK
1,1,1-Trichloroethane	· ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1,1,2,2-Tetrachloroethane	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1,1,2-Trichloroethane	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1,1-Dichloroethane	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1.1-Dichloroethene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-6

Collection Date: 11/20/2013 03:35 PM

Work Order: 13111254

Lab ID: 13111254-19

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	N D		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1.2-Dichloropropane	ND		40	ug/Kg-dry	1	11/30/2013 03:42 AM
2-Butanone	ND		270	μg/Kg-dry	1	11/30/2013 03:42 AM
2-Hexanone	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
4-Methyl-2-pentanone	ND		40	ug/Kg-dry	1	11/30/2013 03:42 AM
Acetone	ND		130	µg/Kg-dry	1	11/30/2013 03:42 AM
Benzene	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Bromodichloromethane	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Bromoform	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Bromomethane	ND		100	μg/Kg-dry	1	11/30/2013 03:42 AM
Carbon disulfide	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Carbon tetrachloride	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Chlorobenzene	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Chloroethane	ND		130	μg/Kg-dry	1	11/30/2013 03:42 AM
Chloroform	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Chloromethane	ND		130	μ g/ Kg-dry	1	11/30/2013 03:42 AM
cis-1,2-Dichioro ethene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
cis-1,3-Dichloropropene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Dibromochloromethane	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Ethylbenzene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
m,p-Xylene	ND		80	µg/Kg-dry	1	11/30/2013 03:42 AM
Methylene chloride	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
o-Xylene	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Styrene	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Tetrachioroethene	ND		40	µg/Kg-dry	1	11/30/2013 03:42 AM
Toluene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
trans-1,2-Dichloroethene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
trans-1,3-Dichloropropene	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
Trichloroethene	ND		40	μ g/K g-dry	1	11/30/2013 03:42 AM
Vinyl chloride	ND		40	μg/Kg-dry	1	11/30/2013 03:42 AM
1,2-Dichloroethene, Total	ND		80	μg/Kg-dry	1	11/30/2013 03:42 AM
1,3-Dichloropropene, Total	ND		80	μg/Kg-dry	1	11/30/2013 03:42 AM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/30/2013 03:42 AM
Surr: 1,2-Dichloroethane-d4	106		70-130	%REC	1	11/30/2013 03:42 AM
Surr: 4-Bromofluorobenzene	95.0		70-130	%REC	1	11/30/2013 03:42 AM
Surr: Dibromofluoromethane	9 5.0		70-130	%REC	1	11/30/2013 03:42 AM
Surr: Toluene-d8	102		70-130	%REC	1	11/30/2013 03:42 AM
IOISTURE			A2540	G		Analyst: MEB
Moisture	25		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-7

Lab ID: 13111254-20

Work Order: 13111254

Collection Date: 11/19/2013 04:00 PM				Matrix: SOIL					
Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed			
MERCURY BY CVAA			SW747		Prep Date:	•			
Mercury	0.039		0.019	mg/Kg-dry	1	12/4/2013 01:02 PM			
METALS BY ICP-MS			SW602	0A	Prep Date:	11/26/2013 Analyst: ML			
Arsenic	14		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
Barium	320		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
Cadmium	1.0		0.95	mg/Kg-dry	5	11/27/2013 04:05 AM			
Chromium	25		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
Lead	42		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
Selenium	ND		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
Silver	ND		2.4	mg/Kg-dry	5	11/27/2013 04:05 AM			
SEMI-VOLATILE ORGANIC COMPO	UNDS - SIM		SW827	OM	Prep Date:	12/2/2013 Analyst: HL			
Acenaphthene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Acenaphthylene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Anthracene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(a)anthracene	N D		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(a)pyrene	ND		4.2	μg/Kg-ary	1	12/3/2013 02:11 PM			
Benzo(b)fluoranthene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(b-k)fluoranthene	ND		8.3	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(g,h,i)perylene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Benzo(k)fluoranthene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Chrysene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Dibenzo(a,h)anthracene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Fluoranthene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Fluorene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Indeno(1,2,3-cd)pyrene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Naphthalene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Phenanthrene	ND		4.2	μg/Kg-dry	1	12/3/2013 02:11 PM			
Pyrene	ND		4.2	ug/Kg-dry	1	12/3/2013 02:11 PM			
Surr: 2-Fluorobiphenyl	66.8		12-100	%REC	1	12/3/2013 02:11 PM			
Surr: 4-Terphenyl-d14	104		25-137	%REC	1	12/3/2013 02:11 PM			
Surr: Nitrobenzene-d5	68.2		37-107	%REC	1	12/3/2013 02:11 PM			
VOLATILE ORGANIC COMPOUNDS	5		SW826)B	Prep Date:	11/19/2013 Analyst: AK			
1,1,1-Trichloroethane	NĐ		38	μg/Kg-dry	1	11/28/2013 10:26 AM			
1,1,2,2-Tetrachloroethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM			
1,1,2-Trichloroethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM			
1,1-Dichloroethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26-AM			
1,1-Dichloroethene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM			

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-7 Collection Date: 11/19/2013 04:00 PM

Work Order: 13111254

Lab ID: 13111254-20

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
1,2-Dichloropropane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
2-Butanone	ND		250	μg/Kg-dry	1	11/28/2013 10:26 AM
2-Hexanone	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
4-Methyl-2-pentanone	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Acetone	ND		130	μg/Kg-dry	1	11/28/2013 10:26 AM
Benzene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Bromodichioromethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Bromoform	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Bromomethane	ND		95	μg/Kg-dry	1	11/28/2013 10:26 AM
Carbon disulfide	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Carbon tetrachloride	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Chlorobenzene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Chloroethane	ND		130	μg/Kg-dry	1	11/28/2013 10:26 AM
Chloroform	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Chloromethane	ND		130	μg/Kg-dry	1	11/28/2013 10:26 AM
cis-1.2-Dichtoroethene	ND		3 8	μg/Kg-dry	1	11/28/2013 10:26 AM
cis-1,3-Dichloropropene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Dibromochloromethane	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Ethylbenzene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
m,p-Xylene	ND		76	μg/Kg-dry	1	11/28/2013 10:26 AM
Methylene chloride	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
o-Xy l ene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Styrene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Tetrachloroethene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Toluene	ND		38	μg/Kg-dry	1	11/28/2013 10;26 AM
trans-1,2-Dichioroethene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
trans-1,3-Dichloropropene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Trichloroethene	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
Vinyl chloride	ND		38	μg/Kg-dry	1	11/28/2013 10:26 AM
1,2-Dichloroethene, Total	ND		76	μg/Kg-dry	1	11/28/2013 10:26 AM
1,3-Dichloropropene, Total	ND		76	μg/Kg-dry	1	11/28/2013 10:26 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/28/2013 10:26 AM
Surr: 1,2-Dichloroethane-d4	104		70-130	%REC	1	11/28/2013 10:26 AM
Surr: 4-Bromofluorobenzene	97.4		70-130	%REC	1	11/28/2013 10:26 AM
Surr: Dibromofluoromethane	100		70-130	%REC	1	11/28/2013 10:26 AM
Surr: Toluene-d8	103		70-130	%REC	1	11/28/2013 10:26 AM
MOISTURE			A2540	G		Analyst: ME B
Moisture	21		0.050	% of samp	ole 1	11/26/2013 12:25 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-8

Lab ID: 13111254-21

Matrix: SOIL

Work Order: 13111254

Collection Date: 11/20/2013 02:00 PM

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		·	SW747	-	Prep Date: 12/3	
Mercury	0.025		0.018	mg/Kg-dry	1	12/4/2013 01:05 PM
METALS BY ICP-MS			SW602	0 A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	9.8		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
Barium	110		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
Cadmium	ND		0.91	mg/Kg-dry	5	11/27/2013 04:11 AM
Chromium	16		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
Lead	14		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
Selenium	ND		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
Silver	ND		2.3	mg/Kg-dry	5	11/27/2013 04:11 AM
SEMI-VOLATILE ORGANIC COMPOUN	DS - SIM		SW827	D M	Prep Date: 12/2	2/2013 Analyst: HL
Acenaphthene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Acenaphthylene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(a)anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(a)pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(b)fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(b-k)fluoranthene	ND		8.1	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(g.h,i)perylene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Benzo(k)fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Chrysene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Dibenzo(a,h)anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Fluorene	ND		4.0	µg/Kg-dry	1	12/3/2013 02:45 PM
Indeno(1,2,3-cd)pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Naphthalene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Phenanthrene	ND		4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Pyrene	ND	•	4.0	μg/Kg-dry	1	12/3/2013 02:45 PM
Surr: 2-Fluorobiphenyl	74.2		12-100	%REC	1	12/3/2013 02:45 PM
Surr: 4-Terphenyl-d14	93.2		25-137	%REC	1	12/3/2013 02:45 PM
Surr: Nitrobenzene-d5	72.6		37-107	%REC	1	12/3/2013 02:45 PM
VOLATILE ORGANIC COMPOUNDS			SW826	DB	Prep Date: 11/1	9/2013 Analyst: AK
1.1.1-Trichtoroethane	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
1,1,2,2-Tetrachioroethane	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
1,1,2-Trichloroethane	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
1,1-Dichloroethane	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
1,1-Dichloroethene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-8

Collection Date: 11/20/2013 02:00 PM

Work Order: 13111254

Lab ID: 13111254-21

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		37	μg/Kg-dry	1	11/30/2013 02;29 AM
1.2-Dichloropropane	ND		37	µg/Kg-dry	1	11/30/2013 02:29 AM
2-Butanone	ND		250	μg/Kg-dry	1	11/30/2013 02:29 AM
2-Hexanone	ND		3 7	µg/Kg-dry	1	11/30/2013 02:29 AM
4-Methyl-2-pentanone	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Acetone	ND		120	μg/Kg-dry	1	11/30/2013 02:29 AM
Benzene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Bromodichioromethane	ND		37	μο/Kg-dry	1	11/30/2013 02:29 AM
Bromoform	ND		37	μ g/ Kg-dry	1	11/30/2013 02:29 AM
Bromomethane	ND		93	μg/Kg-dry	1	11/30/2013 02;29 AM
Carbon disulfide	ND		37	μ g/ Kg-dry	1	11/30/2013 02:29 AM
Carbon tetrachloride	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Chlorobenzene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Chloroethane	ND		120	µg/Kg-ary	1	11/30/2013 02:29 AM
Chloroform	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Chloromethane	ND		120	µg/Kg-dry	1	11/30/2013 02:29 AM
cis-1,2-Dichloroethene	ND		3 7	μο/Kg-dry	1	11/30/2013 02:29 AM
cis-1,3-Dichloropropene	ND		37	µg/Kg-dry	1	11/30/2013 02:29 AM
Dibromochloromethane	ND		3 7	μg/Kg-dry	1	11/30/2013 02:29 AM
Ethylbenzene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
m,p-Xylene	ND		75	μg/Kg-dry	1	11/30/2013 02:29 AM
Methylene chloride	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
o-Xylene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Styrene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Tetrachloroethene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Toluene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
trans-1,2-Dichloroethene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
trans-1,3-Dichloropropene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Trichloroethene	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
Vinyl chloride	ND		37	μg/Kg-dry	1	11/30/2013 02:29 AM
1,2-Dichloroethene, Total	ND		75	μg/Kg-dry	1	11/30/2013 02:29 AM
1,3-Dichloropropene, Total	ND		75	μg/Kg-dry	1	11/30/2013 02:29 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/30/2013 02:29 AM
Surr: 1,2-Dichloroethane-d4	96.8		70-130	%REC	1	11/30/2013 02:29 AM
Surr: 4-Bromofluorobenzene	102		70-130	%REC	1	11/30/2013 02:29 AM
Surr: Dibromofluoromethane	104		70-130	%REC	1	11/30/2013 02:29 AM
Surr: Toluene-d8	101		70-130	%REC	1	11/30/2013 02;29 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	20		0.050	% of samp	ole 1	11/26/2013 03:00 PM

· 1 /

Client: Triad Engineering, Inc.

Project: Johns Manville-Riverside Parcels

Sample ID: SB-9

Collection Date: 11/20/2013 12:00 PM

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-22

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW7471		Prep Date:	,
Mercury	0.28		0.020	mg/Kg-dry	1	12/4/2013 01:15 PM
METALS BY ICP-MS			SW6020)A	Prep Date:	11/26/2013 Analyst: ML
Arsenic	4.0		2.6	mg/Kg-dry	5	11/27/2013 04:17 AM
Barium	1,700		26	mg/Kg-dry	50	11/27/2013 03:13 PM
Cadmium	6.3		1.1	mg/Kg-dry	5	11/27/2013 04:17 AM
Chromium	9.3		2.6	mg/Kg-dry	5	11/27/2013 04:17 AM
Lead	280		2,6	mg/Kg-dry	5	11/27/2013 04:17 AM
Selenium	ND		2.6	mg/Kg-dry	5	11/27/2013 04:17 AM
Silver	ND		2.6	mg/Kg-dry	5	11/27/2013 04:17 AM
SEMI-VOLATILE ORGANIC COMPOUND	OS - SIM		SW8270	ıM	Prep Date:	12/2/2013 Analyst: HL
Acenaphthene	ND		2 2	μg/Kg-dry	5	12/3/2013 06:38 PM
Acenaphthylene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Anthracene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(a)anthracene	ND		2 2	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(a)pyrene	ND		2 2	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(b)fluoranthene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(b-k)fluorantnene	ND		44	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(e)pyrene	ND		66	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(g,h,i)perylene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Benzo(k)fluoranthene	ND		22	µg/Kg-dry	5	12/3/2013 06:38 PM
Chrysene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Dibenzo(a,h)anthracene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Fluoranthene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Fluorene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Indeno(1,2,3-cd)pyrene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Naphthalene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Phenanthrene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Pyrene	ND		22	μg/Kg-dry	5	12/3/2013 06:38 PM
Surr: 2-Fluorobiphenyl	36.0		12-100	%REC	5	12/3/2013 06:38 PM
Surr: 4-Terphenyl-d14	42.0		25-137	%REC	5	12/3/2013 06:38 PM
Surr: Nitrobenzene-d5	27.0	s	37-107	%REC	5	12/3/2013 06:38 PM
VOLATILE ORGANIC COMPOUNDS			SW8260	В	Prep Date:	11/19/2013 Analyst: AK
1,1,1-Trichioroethane	N D		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1,1,2,2-Tetrachloroethane	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1,1,2-Trichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1,1-Dichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1,1-Dichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-9

Collection Date: 11/20/2013 12:00 PM

Work Order: 13111254

Lab ID: 13111254-22

Matrix: SOIL

analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1.2-Dichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1.2-Dichloropropane	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
2-Butanone	ND		260	µg/Kg-dry	1	11/28/2013 08:49 AM
2-Hexanone	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
4-Methyl-2-pentanone	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Acetone	ND		130	µg/Kg-dry	1	11/28/2013 08:49 AM
Benzene	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Bromodichloromethane	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Bromoform	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Bromomethane	ND		99	μg/Kg-dry	1	11/28/2013 08:49 AM
Carbon disulfide	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Carbon tetrachloride	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Chlorobenzene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Chioroethane	ND		130	µg/Kg-dry	1	11/28/2013 08:49 AM
Chloroform	ND		39	µg/Kg-áry	1	11/28/2013 08:49 AM
Chlorometnane	ND		130	µg/Kg-dry	. 1	11/28/2013 08:49 AM
cis-1.2-Dichloroethene	ND		39	μα/Kg-ary	1	11/28/2013 08:49 AM
cis-1,3-Dichioropropene	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Dibromochloromethane	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Ethylbenzene	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
m,p-Xylene	ND		79	μg/Kg-dry	1	11/28/2013 08:49 AM
Methylene chloride	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
o-Xylene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Styrene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Tetrachioroethene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Toluene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
trans-1,2-Dichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
trans-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
Trichloroethene	ND		39	µg/Kg-dry	1	11/28/2013 08:49 AM
Vinyl chloride	ND		39	μg/Kg-dry	1	11/28/2013 08:49 AM
1,2-Dichloroethene, Total	ND		79	µg/Kg-dry	1	11/28/2013 08:49 AM
1,3-Dichloropropene, Total	ND		79	μg/Kg-dry	1	11/28/2013 08:49 AM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 08:49 AM
Surr: 1,2-Dichloroethane-d4	10 3		70-130	%REC	1	11/28/2013 08:49 AM
Surr: 4-Bromofluorobenzene	96.6		70-130	%REC	1	11/28/2013 08:49 AM
Surr: Dibromofluoromethane	100		70-130	%REC	1	11/28/2013 08:49 AM
Surr: Toluene-d8	104		70-130	%REC	1	11/28/2013 08:49 AM
IOISTURE			A2540 (3		Analyst: MEB
Moisture	24		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/20/2013 02:30 PM

Work Order: 13111254

Lab ID: 13111254-23

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/3	3/2013 Analyst: LR
Mercury	0.035		0.014	mg/Kg-dry		12/4/2013 01:17 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 11/2	26/2013 Analyst: ML
Arsenic	9.2		2.4	mg/Kg-dry	5	11/27/2013 04:23 AM
Barium	150		2.4	mg/Kg-dry	5	11/27/2013 04:23 AM
Cadmium	ND		0.96	mg/Kg-dry	5	11/27/2013 04:23 AM
Chromium	17		2.4	mg/Kg-dry	5	11/27/2013 04:23 AM
Lead	17		2.4	mg/Kg-dry	5	11/27/2013 04:23 AM
Selenium	ND		2.4	mg/Kg-dry	5	11/27/2013 04;23 AM
Silver	ND		2.4	mg/Kg-ary	5	11/27/2013 04:23 AM
SEMI-VOLATILE ORGANIC COMPOU	NDS - SIM		SW827	ом	Prep Date: 12/2	2/2013 Analyst: HL
Acenaphthene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Acenaphthylene	ND		3.8	µg/Kg-dry	í	12/3/2013 03:18 PM
Anthracene	ND		3.8	µg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(a)anthracene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(a)pyrene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:16 PM
Benzo(b)fluoranthene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(b-k)fluoranthene	ND		7.6	μg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(e)pyrene	ND		11	μg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(g,h,i)perylene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Benzo(k)fluoranthene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Chrysene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Dibenzo(a,h)anthracene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Fluoranthene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Fluorene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Indeno(1,2,3-cd)pyrene	ND		3,8	μg/Kg-dry	1	12/3/2013 03:18 PM
Naphthalene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Phenanthrene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Pyrene	ND		3.8	μg/Kg-dry	1	12/3/2013 03:18 PM
Surr: 2-Fluorobiphenyl	75.6		12-100	%REC	1	12/3/2013 03:18 PM
Surr: 4-Terphenyl-d14	107		25-137	%REC	1	12/3/2013 03:18 PM
Surr: Nitrobenzene-d5	74.2		37-107	%REC	1	12/3/2013 03:18 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/1	9/2013 Analyst: AK
1,1.1-Trichloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
1,1,2,2-Tetrachloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
1,1,2-Trichloroethane	ND		35	µg/Kg-dry	1	11/30/2013 02:53 AM
1.1-Dichloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
1.1-Dichloroethene	ND		35	ug/Kg-dry	1	11/30/2013 02:53 AM

Note:

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-10

Collection Date: 11/20/2013 02:30 PM

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-23

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
1.2-Dichloropropane	N D		35	μg/Kg-dry	1	11/30/2013 02:53 AM
2-Butanone	ND		230	μg/Kg-dry	1	11/30/2013 02:53 AM
2-Hexanone	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
4-Methyl-2-pentanone	, N D		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Acetone	ND		120	μg/Kg-dry	1	11/30/2013 02:53 AM
Benzene	N D		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Bromodichloromethane	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Bromoform	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Bromomethane	ND		88	μg/Kg-dry	1	11/30/2013 02:53 AM
Carbon disulfide	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Carbon tetrachloride	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Chlorobenzene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/30/2013 02:53 AM
Chloroform	ND		3 5	μg/Kg-dry	1	11/30/2013 02:53 AM
Chloromethane	ND		120	μα/Kg-dry	1	11/30/2013 02:53 AM
cis-1,2-Dichloroethene	ND		3 5	μα/Κο-dry	1	11/30/2013 02:53 AM
cis-1.3-Dichloropropene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Dibromochioromethane	ND		3 5	μg/Kg-dry	1	11/30/2013 02:53 AM
Ethyłbenzene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
m,p-Xylene	ND		70	μg/Kg-dry	1	11/30/2013 02:53 AM
Methylene chloride	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
o-Xylene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Styrene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Tetrachloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Toluene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
trans-1,2-Dichloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
trans-1,3-Dichloropropene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Trichloroethene	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
Vinyl chloride	ND		35	μg/Kg-dry	1	11/30/2013 02:53 AM
1,2-Dichloroethene, Total	ND		70	μg/Kg-dry	1	11/30/2013 02:53 AM
1,3-Dichloropropene, Total	ND		70	μg/Kg-dry	1	11/30/2013 02:53 AM
Xylenes, Total	ND		110	μg/Kg-dry	1	11/30/2013 02:53 AM
Surr: 1,2-Dichloroethane-d4	106		70-130	%REC	1	11/30/2013 02:53 AM
Surr: 4-Bromofluorobenzene	102		70-130	%REC	1	11/30/2013 02:53 AM
Surr: Dibromofluoromethane	97.6		70-130	%REC	1	11/30/2013 02:53 AM
Surr: Toluene-d8	107		70-130	%REC	1	11/30/2013 02:53 AM
MOISTURE			A2540	_		Analyst: MEB
Moisture	15		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-11

Collection Date: 11/19/2013 10:00 AM

Work Order: 13111254

Lab ID: 13111254-24

Matrix: SOIL

Anałyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA		·	SW747	1	Prep Date: 12/3/2	013 Analyst: LR
Mercury	0.029		0.016	mg/Kg-dry	1	12/4/2013 01:20 PM
METALS BY ICP-MS			SW602	A0	Prep Date: 11/26/	2013 Analyst: ML
Arsenic	8.8		2,3	mg/Kg-dry	5	11/27/2013 04:30 AM
Barium	130		2.3	mg/Kg-dry	5	11/27/2013 04:30 AM
Cadmium	ND		0.91	mg/Kg-dry	5	11/27/2013 04:30 AM
Chromium	15		2.3	mg/Kg-dry	5	11/27/2013 04:30 AM
Lead	15		2.3	mg/Kg-dry	5	11/27/2013 04:30 AM
Selenium	ND		2.3	mg/Kg-dry	5	11/27/2013 04:30 AM
Silver	, ND		2.3	mg/Kg-dry	5	11/27/2013 04:30 AM
SEMI-VOLATILE ORGANIC COMPOUND	OS - SIM		SW827	0M	Prep Date: 12/2/2	013 Analyst: HL
Acenaphthene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Acenaphthylene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(a)anthracene	ND		4.0	µg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(a)pyrene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(b)fluoranthene	4,8		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(b-k)fluoranthene	ND		7,9	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(e)pyrene	ND		12	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(g,h,i)perylene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Benzo(k)fluoranthene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Chrysene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Dibenzo(a,h)anthracene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Fluoranthene	6.0		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Fluorene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Indeno(1,2,3-cd)pyrene	N D		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Naphthalene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Phenanthrene	ND		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Pyrene	4.4		4.0	μg/Kg-dry	1	12/3/2013 03:51 PM
Surr: 2-Fluorobiphenyl	66.8		12-100	%REC	1	12/3/2013 03:51 PM
Surr: 4-Terphenyl-d14	97.4		25-137	%REC	1	12/3/2013 03:51 PM
Surr: Nitrobenzene-d5	63.6		37-107	%REC	1	12/3/2013 03:51 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/19/	2013 Analyst: CW
1,1,1-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
1,1,2,2-Tetrachloroethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
1,1,2-Trichloroethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
1,1-Dichioroethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
1,1-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-11

Collection Date: 11/19/2013 10:00 AM

Work Order: 13111254

Lab ID: 13111254-24

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichioroethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
1,2-Dichloropropane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
2-Butanone	ND		240	μg/Kg-dry	1	11/28/2013 08:11 AM
2-Hexanone	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
4-Methyl-2-pentanone	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Acetone	ND		120	μg/Kg-dry	1	11/28/2013 08:11 AN
Benzene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Bromodichloromethane	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Bromoform	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Bromomethane	ND		90	μg/Kg-dry	1	11/28/2013 08:11 AM
Carbon disulfide	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
Carbon tetrachloride	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
Chlorobenzene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
Chloroethane	ND		120	μg/Kg-dry	1	11/28/2013 08:11 AN
Chloroform	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Chloromethane	ND		120	μg/Kg-dry	1	11/28/2013 08:11 AN
cis-1,2-Dichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
cis-1,3-Dichtoropropene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Dibromochloromethane	ND		36	μg/iKg-dry	1	11/28/2013 08:11 AN
Ethylbenzene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
m,p-Xylene	ND		72	μg/Kg-dry	1	11/28/2013 08:11 AM
Methylene chloride	ND		36	µg/Kg-dry	1	11/28/2013 08:11 AN
o-Xylene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AM
Styrene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Tetrachloroethene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Toluene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
trans-1,2-Dichloroethene	ND		36	µg/Kg-dry	1	11/28/2013 08:11 AN
trans-1,3-Dichloropropene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Trichloroethene	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
Vinyl chloride	ND		36	μg/Kg-dry	1	11/28/2013 08:11 AN
1,2-Dichloroethene, Total	ND		72	μg/Kg-dry	1	11/28/2013 08:11 AN
1,3-Dichloropropene, Total	ND		72	μg/Kg-dry	1	11/28/2013 08:11 AN
Xylenes, Total	ND.		110	μg/Kg-dry	1	11/28/2013 08:11 AN
Surr: 1,2-Dichloroethane-d4	97.3		70-130	%REC	1	11/28/2013 08:11 AM
Surr: 4-Bromofluorobenzene	97.6		70-130	%REC	1	11/28/2013 08:11 AN
Surr: Dibromofluoromethane	99.3		70-130	%REC	1	11/28/2013 08:11 AM
Sur: Toluene-d8	99.8		70-130	%REC	1	11/28/2013 08:11 AN
OISTURE			A2540	G		Analyst: MEB
Moisture	17		0.050	% of samp	ote 1	11/26/2013 03:00 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-13

Collection Date: 11/19/2013 11:00 AM

Work Order: 13111254

Lab ID: [3]11254-25

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/3/2013	Analyst: LR
Mercury	0.031		0.019	mg/Kg-dry	1	12/4/2013 01:27 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 11/26/201	3 Analyst: ML
Arsenic	12		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
Barium	220		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
Cadmium	ND		1.1	mg/Kg-dry	5	11/27/2013 04:36 AM
Chromium	22		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
Lead	19		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
Selenium	ND		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
Silver	ND		2.8	mg/Kg-dry	5	11/27/2013 04:36 AM
SEMI-VOLATILE ORGANIC COMPOUND	S - SIM		SW827	0M	Prep Date: 12/2/2013	Analyst: HL
Acenaphthene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Acenaphthylene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Anthracene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(a)anthracene	ND		4.3	μg/ Kg -dry	1	12/3/2013 04:25 PM
Benzo(a)pyrene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(b)fluoranthene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(b-k)fluoranthene	ND		8.6	μg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(e)pyrene	ND		13	μg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(g,h,i)perylene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Benzo(k)fluoranthene	ND		4.3	ug/Kg-dry	1	12/3/2013 04:25 PM
Chrysene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:25 PM
Dibenzo(a,h)anthracene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Fluoranthene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Fluorene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Indeno(1,2,3-cd)pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Naphthalene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Phenanthrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:25 PM
Surr: 2-Fluorobiphenyl	80.4		12-100	%REC	1	12/3/2013 04:25 PM
Surr: 4-Terphenyl-d14	109		25-137	%REC	1	12/3/2013 04:25 PM
Surr: Nitrobenzene-d5	77.2		37-107	%REC	1	12/3/2013 04:25 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/19/201:	3 Analyst: CW
1,1,1-Trichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1,1,2,2-Tetrachloroethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1,1,2-Trichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1,1-Dichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1.1-Dichioroethene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-13

Collection Date: 11/19/2013 11:00 AM

Work Order: 13111254

Lab ID: 13111254-25

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1,2-Dichloropropane	ИD		40	μg/Kg-dry	1	11/28/2013 08:59 AM
2-Butanone	ND		260	μg/Kg-dry	1	11/28/2013 08:59 AM
2-Hexanone	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
4-Methyl-2-pentanone	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Acetone	ND		130	μg/Kg-dry	1	11/28/2013 08:59 AM
Benzene	ИD		40	µg/Kg-ary	1	11/28/2013 08:59 AM
Bromodichloromethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Bromoform	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Bromomethane	ND		99	μg/Kg-dry	1	11/28/2013 08:59 AM
Carbon disulfide	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Carbon tetrachloride	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Chlorobenzene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Chloroethane	ND		130	μg/Kg-dry	1	11/28/2013 08:59 AM
Chloroform	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Chloromethane	ND		130	μg/Kg-dry	1	11/28/2013 08:59 AM
cis-1,2-Dichloroethene	NE:		40	μg/Kg-dry	1	11/28/2013 08:59 AM
cis-1,3-Dichloropropene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Dibromochloromethane	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Ethylbenzene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
m,p-Xylene	ND		79	μg/Kg-dry	1	11/28/2013 08:59 AM
Methylene chloride	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
o-Xylene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Styrene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Tetrachloroethene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Toluene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
trans-1,2-Dichloroethene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
trans-1,3-Dichloropropene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Trichloroethene	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
Vinyl chloride	ND		40	μg/Kg-dry	1	11/28/2013 08:59 AM
1,2-Dichloroethene, Total	ND		79	μg/Kg-dry	1	11/28/2013 08:59 AM
1,3-Dichloropropene, Total	ND		79	μg/Kg-dry	1	11/28/2013 08:59 AM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 08:59 AM
Surr: 1,2-Dichloroethane-d4	98.3		70-130	%REC	1	11/28/2013 08:59 AM
Surr: 4-Bromofluorobenzene	97.8		70-130	%REC	1	11/28/2013 08:59 AM
Surr: Dibromofluoromethane	98.2		70-130	%REC	1	11/28/2013 08:59 AM
Surr: Toluene-d8	100		70-130	%REC	1	11/28/2013 08:59 AM
MOISTURE			A2540	_		Analyst: MEB
Moisture	24		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Date: 13-Dec-13

Client:

Triad Engineering; Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-15

SB-15

Collection Date: 11/20/2013 11:00 AM

Work Order: 13111254

Lab ID: 13111254-26

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12	/3/2013 Analyst: LR
Mercury	0.041		0.019	mg/Kg-dry	1	12/4/2013 01:30 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 11	/26/2013 Analyst: ML
Arsenic	12		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
Barium	190		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
Cadmium	ND		1.0	mg/Kg-dry	5	11/27/2013 04:42 AM
Chromium	20		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
Lead	17		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
Selenium	ND		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
Silver	ND		2.6	mg/Kg-dry	5	11/27/2013 04:42 AM
SEMI-VOLATILE ORGANIC COMPOL	JNDS - SIM		SW827	0M	Prep Date: 12	/2/2013 Analyst: HL
Acenaphthene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:58 PM
Acenaphthylene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Anthracene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(a)anthracene	ND		4.3	ug/Kg-ory	1	12/3/2013 04:58 PM
Benzo(a)pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(b)fluoranthene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(b-k)fluoranthene	ND		8.5	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(e)pyrene	ND		13	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(g.h,i)perylene	ND		4,3	μg/Kg-dry	1	12/3/2013 04:58 PM
Benzo(k)fluoranthene	ND		4.3	μα/Kg-ary	1	12/3/2013 04:58 PM
Chrysene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Dibenzo(a,h)anthracene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Fluoranthene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:58 PM
Fluorene	ND		4.3	µg/Kg-dry	1	12/3/2013 04:58 PM
indeno(1,2.3-cd)pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Naphthalene	ND		4.3	μ g /Kg-dry	1	12/3/2013 04:58 PM
Phenanthrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Pyrene	ND		4.3	μg/Kg-dry	1	12/3/2013 04:58 PM
Surr: 2-Fluorobiphenyl	79.0		12-100	%REC	1	12/3/2013 04:58 PM
Surr: 4-Terphenyl-d14	102		25-137	%REC	1	12/3/2013 04:58 PM
Surr: Nitrobenzene-d5	70.2		37-107	%REC	1	12/3/2013 04:58 PM
VOLATILE ORGANIC COMPOUNDS			SW826	NΒ	Prep Date: 11	/19/2013 Analyst: AK
1,1,1-Trichloroethane	NĐ		39	μg/Kg-dry	1	11/28/2013 09:14 AM
1,1,2,2-Tetrachloroethane	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
1,1,2-Trichloroethane	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
1.1-Dichioroethane	ND.		39	μg/Kg-dry	1	11/28/2013 09:14 AM
1.1-Dichloroethene	. ND		39	µg/Kg-dry µg/Kg-dry	1	11/28/2013 09:14 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-15

Collection Date: 11/20/2013 11:00 AM

Work Order: 13111254

Lab ID: 13111254-26

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
1,2-Dichloropropane	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
2-Butanone	ND		260	µg/Kg-dry	1	11/28/2013 09:14 AM
2-Hexanone	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
4-Methyl-2-pentanone	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Acetone	ND		130	μg/Kg-dry	1	11/28/2013 09:14 AM
Benzene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Bromodichloromethane	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Bromoform	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Bromomethane	ND		97	µg/Kg-dry	1	11/28/2013 09:14 AM
Carbon disulfide	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Carbon tetrachloride	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Chlorobenzene	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
Chloroethane	ND		130	µg/Kg-dry	1	11/28/2013 09:14 AM
Chloroform	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
Chloromethane	ND		130	μg/Kg-dry	1	11/28/2013 09:14 AM
cis-1.2-Dichloroetnene	ND		3 9	μg/Kg-dry	1	11/28/2013 09:14 AM
cis-1,3-Dichloropropene	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
Dibromochloromethane	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Ethylbenzene	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
m,p-Xylene	ND		78	μg/Kg-dry	1	11/28/2013 09:14 AM
Methylene chloride	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
o-Xylene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Styrene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Tetrachloroethene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Toluene	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
trans-1,2-Dichloroethene	ND		39	µg/Kg-dry	1	11/28/2013 09:14 AM
trans-1,3-Dichloropropene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Trichloroethene	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
Vinyl chloride	ND		39	μg/Kg-dry	1	11/28/2013 09:14 AM
1,2-Dichloroethene, Total	ND		78	µg/Kg-dry	1	11/28/2013 09:14 AM
1,3-Dichloropropene, Total	ND		78	μg/Kg-dry	1	11/28/2013 09:14 AM
Xylenes, Total	ND		120	μg/Kg-dry	1	11/28/2013 09:14 AM
Surr: 1,2-Dichloroethane-d4	104		70-130	%REC	1	11/28/2013 09:14 AM
Surr: 4-Bromofluorobenzene	98.6		70-130	%REC	1	11/28/2013 09:14 AM
Surr: Dibromofluoromethane	97.8		70-130	%REC	1	11/28/2013 09:14 AM
Surr: Toluene-d8	106		70-130	%REC	1	11/28/2013 09:14 AM
MOISTURE			A2540	G		Analyst: MEB
Moisture	. 23		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Collection Date: 11/20/2013 03:00 PM

SB-16

Work Order: 13111254

Lab ID: 13111254-27

Matrix: SOIL

Analyses	Result Qual		T 1 1. TT 1		Dilution Factor	Date Analyzed
MERCURY BY CVAA			SW747	1	Prep Date: 12/3	J/2013 Analyst: LR
Mercury	0.091		0.020	mg/Kg-dry	1	12/4/2013 01:32 PM
METALS BY ICP-MS			SW602	0A	Prep Date: 11/2	27/2013 Analyst: ML
Arsenic	11		2.2	mg/Kg-dry	•	11/27/2013 11:44 PM
Barium	230		2.2	mg/Kg-dry	5	11/27/2013 11:44 PM
Cadmium	ND		0.88	mg/Kg-dry	5	11/27/2013 11:44 PM
Chromium	22		2.2	mg/Kg-dry	5	11/27/2013 11:44 PM
Lead	27		4,4	mg/Kg-dry	10	12/10/2013 08:28 PM
Selenium	ND		2.2	mg/Kg-dry	5	11/27/2013 11:44 PM
Silver	ND		2.2	mg/Kg-dry	5	11/27/2013 11:44 PM
SEMI-VOLATILE ORGANIC COMPOU	NDS - SIM		SW827	OM	Prep Date: 12/2	2/2013 Analyst: HL
Acenaphthene	ND		4.5	- μg/Kg-dry	1	12/3/2013 05:31 PM
Acenaphthylene	ND		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Anthracene	6.3		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(a)anthracene	45		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(a)pyrene	28		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(b)fluoranthene	47		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(b-k)fluoranthene	57		9.0	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(e)pyrene	21		14	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(g,h,i)perylene	14		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Benzo(k)fluoranthene	9.9		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Chrysene	25		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Dibenzo(a,h)anthracene	ND		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Fluoranthene	55		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Fluorene	ND		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Indeno(1,2,3-cd)pyrene	15		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Naphthalene	ND		4.5	μg/Kg-dry	1	12/3/2013 05:31 PM
Phenanthrene	15		4,5	μg/Kg-dry	1	12/3/2013 05:31 PM
Pyrene	40		4,5	μg/Kg-dry	1	12/3/2013 05:31 PM
Surr: 2-Fluorobiphenyl	68.8		12-100	%REC	1	12/3/2013 05:31 PM
Surr: 4-Terphenyl-d14	98.6		25-137	%REC	1	12/3/2013 05:31 PM
Surr: Nitrobenzene-d5	69.8		37-107	%REC	1	12/3/2013 05:31 PM
VOLATILE ORGANIC COMPOUNDS			SW826	0B	Prep Date: 11/1	9/2013 Analyst: AK
1,1,1-Trichloroethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,1,2,2-Tetrachloroethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,1,2-Trichloroethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,1-Dichloroethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,1-Dichioroethene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

SB-16

Collection Date: 11/20/2013 03:00 PM

Work Order: 13111254

Lab ID: 13111254-27

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloroethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,2-Dichloropropane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
2-Butanone	ND		270	μg/Kg-dry	1	11/30/2013 03:17 AM
2-Hexanone	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
4-Methyl-2-pentanone	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Acetone	ND		140	μg/Kg-dry	1	11/30/2013 03:17 AM
Benzene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Bromodichloromethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Bromoform	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Bromomethane	ND		100	μg/Kg-dry	1	11/30/2013 03:17 AM
Carbon disulfide	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Carbon tetrachloride	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Chiorobenzene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Chloroethane	ND		140	μg/Kg-dry	1	11/30/2013 03:17 AM
Chloroform	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AN
Chloromethane	ND		140	μg/Kg-dry	1	11/30/2013 03:17 AN
cis-1,2-Dichlorgetnene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AN
cis-1,3-Dichloropropene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AN
Dibromochloromethane	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Ethylbenzene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
m,p-Xylene	ND		82	μg/Kg-dry	1	11/30/2013 03:17 AM
Methylene chloride	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AN
o-Xylene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Styrene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AN
Tetrachloroethene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Toluene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
trans-1,2-Dichloroethene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
trans-1,3-Dichloropropene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Trichloroethene	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
Vinyl chloride	ND		41	μg/Kg-dry	1	11/30/2013 03:17 AM
1,2-Dichloroethene, Total	ND		82	μg/Kg-dry	1	11/30/2013 03:17 AN
1,3-Dichloropropene, Total	ND		82	μg/Kg-dry	1	11/30/2013 03:17 AN
Xylenes, Total	ND		120	μg/Kg-dry	1	11/30/2013 03:17 AN
Surr: 1,2-Dichloroethane-d4	102		70-130	%REC	1	11/30/2013 03:17 AN
Surr: 4-Bromofluorobenzene	113		70-130	%REC	1	11/30/2013 03:17 AN
Surr: Dibromofluoromethane	103		70-130	%REC	1	11/30/2013 03:17 AN
Surr: Toluene-d8	101		70-130	%REC	1	11/30/2013 03:17 AN
MOISTURE			A2540	G		Analyst: MEB
Moisture	27		0.050	% of samp	ole 1	11/26/2013 03:00 PM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-1

Collection Date: 11/21/2013 09:45 AM

Work Order: 13111254

Lab ID: 13111254-28 Matrix: WATER

Analyses	Result	Qual	Report Limit Units		Dilution Factor	Date Analyzed		
MERCURY BY CVAA (DISSOLVED)	ND		SW747	-	Prep Date: 12/3/201	3 Analyst: LR 12/4/2013 01:48 PM		
Mercury	ND		0.00020	mg/L	,	12/4/2013 01:40 PM		
METALS BY ICP-MS (DISSOLVED)			SW602		Prep Date: 11/26/20	•		
Arsenic	ND		0.0050	mg/L	1	11/30/2013 07:15 AM		
Barium	0.048		0.0050	mg/L	1	11/30/2013 07:15 AM		
Cadmium	ND		0.0020	mg/L	1	11/30/2013 07:15 AM		
Chromium	ND		0.0050	mg/L	1	11/30/2013 07:15 AM		
Lead	ND		0.0050	mg/L	1	12/3/2013 05:49 AM		
Selenium	ND		0.0050	mg/L	1	11/30/2013 07:15 AM		
Silver	ND		0.0050	mg/L	1	11/30/2013 07:15 AM		
POLYNUCLEAR AROMATIC HYDROCA	RBONS (PAI	HS) - SIN	/ SW827	0M	Prep Date: 11/27/20	13 Analyst: HL		
Acenaphthene	ND	•	0.060	μg/L	. 1	12/2/2013 04:19 PM		
Acenaphthylene	ND		0.080	μg/L	1	12/2/2013 04:19 PM		
Anthracene	ND		0.060	μg/L	1	12/2/2013 04:19 PM		
Benzo(a)anthracene	ND		0.040	μg/L	1	12/2/2013 04:19 PM		
Benzo(a)pyrene	ND		0.080	μg/L	1	12/2/2013 04:19 PM		
Benzo(b)fluoranthene	NO		0.090	μg/L	1	12/2/2013 04:19 PM		
Benzo(b-k)fluorantnene	ND		0.11	µg/L	1	12/2/2013 04:19 PM		
Benzo(g,h,i)perylene	ND		0.080	μg/L	1	12/2/2013 04:19 PM		
Benzo(k)fluoranthene	ND		0.050	µg/L	1	12/2/2013 04:19 PM		
Chrysene	ND		0.050	μg/L	1	12/2/2013 04:19 PM		
Dibenzo(a,h)anthracene	ND		0.080	μg/L	1	12/2/2013 04:19 PM		
Fluoranthene	ND		0.070	μg/L	1	12/2/2013 04:19 PM		
Fluorene	ND		0.050	μg/L	1	12/2/2013 04:19 PM		
Indeno(1,2,3-cd)pyrene	ND		0.070	μg/L	1	12/2/2013 04:19 PM		
Naphthalene	ND		0.070	μg/L	1	12/2/2013 04:19 PM		
Phenanthrene	ND		0.080	μg/L	1	12/2/2013 04:19 PM		
Pyrene	ND		0.050	μg/L	1	12/2/2013 04:19 PM		
Surr: 2-Fluorobiphenyl	52.6		10-112	%REC	1	12/2/2013 04:19 PM		
Surr: 4-Terphenyl-d14	75.6		10-132	%REC	1	12/2/2013 04:19 PM		
Surr: Nitrobenzene-d5	54.2		15-110	%REC	1	12/2/2013 04:19 PM		
VOLATILE ORGANIC COMPOUNDS			SW826	n		Analyst: AK		
1,1,1-Trichloroethane	ND		1.0	υ μg/L	1	11/30/2013 05:19 AM		
1,1,2,2-Tetrachloroethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM		
1.1,2-Trichloroethane	ND		1.0	μ g /L	1	11/30/2013 05:19 AM		
1,1-Dichloroethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM		
1,1-Dichloroethene	ND		1.0	μg/L μg/L	1	11/30/2013 05:19 AM		
1,2-Dichloroethane	ND ND		1.0	μg/L μg/L	1	11/30/2013 05:19 AM		

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-1

Collection Date: 11/21/2013 09:45 AM

.

Work Order: 13111254

Lab ID: 13111254-28

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloropropane	ND		2.0	μg/L	1	11/30/2013 05:19 AM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 05:19 AM
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 05:19 AM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 05:19 AM
Acetone	ND		20	μg/L	1	11/30/2013 05:19 AM
Benzene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Bromoform	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Bromomethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Carbon disulfide	ND		2.5	μg/L	1	11/30/2013 05:19 AM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Chlorobenzene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Chioroethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Chloroform	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Chloromethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM
cis-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
cis-1.3-Dichtoropropene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Dibromochloromethane	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Ethylbenzene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
m,p-Xylene	ND		2.0	μg/L	1	11/30/2013 05:19 AM
Methylene chloride	ND		5.0	μg/L	1	11/30/2013 05:19 AM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Styrene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Tetrachioroethene	ND		2.0	μg/L	1	11/30/2013 05:19 AM
Toluene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
trans-1,3-Dichloropropene	· ND		1.0	μg/L	1	11/30/2013 05:19 AM
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 05:19 AM
Vinyi chloride	ND		1.0	μg/L	1	11/30/2013 05:19 AM
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 05:19 AM
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	11/30/2013 05:19 AM
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 05:19 AM
Surr: 1,2-Dichloroethane-d4	104		70-120	%REC	1	11/30/2013 05:19 AM
Surr: 4-Bromofluorobenzene	101		75-120	%REC	1	11/30/2013 05:19 AM
Surr: Dibromofluoromethane	111		85-115	%REC	1	11/30/2013 05:19 AM
Surr: Toluene-d8	107		85-120	%REC	1	11/30/2013 05:19 AM

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-3

Collection Date: 11/21/2013 11:30 AM

Work Order: 13111254

Lab ID: 13111254-29

Matrix: WATER

Analyses	Result	Qual	Report Limit Units		Dilution Factor	Date Analyzed		
MERCURY BY CVAA (DISSOLVED)			SW747	-	Prep Date: 12/3	,		
Mercury	ND		0.00020	mg/L	1	12/4/2013 01:50 PM		
METALS BY ICP-MS (DISSOLVED)			SW602	0A	Prep Date: 11/2	26/2013 Analyst: ML		
Arsenic	0.028		0.0050	mg/L	1	11/30/2013 07:21 AM		
Barium	0.96		0.0050	mg/∟	1	11/30/2013 07:21 AM		
Cadmium	ND		0.0020	mg/L	1	11/30/2013 07:21 AM		
Chromium	0.0064		0.0050	mg/L	1	11/30/2013 07:21 AM		
Lead	ND		0.025	mg/L	5	12/3/2013 05:55 AM		
Selenium	ND		0.0050	mg/L	1	11/30/2013 07:21 AM		
Silver	ND		0.0050	mg/L	1	11/30/2013 07:21 AM		
POLYNUCLEAR AROMATIC HYDROCA	ARBONS (PA	HS) - SIN	4 SW827	0M	Prep Date: 11/2	27/2013 Analyst: HL		
Acenaphthene	ND	,	0.060	μg/L	1	12/2/2013 05:59 PM		
Acenaphthylene	ND		0.080	μg/L	1	12/2/2013 05:59 PM		
Anthracene	ND		0.060	μg/L	1	12/2/2013 05:59 PM		
Benzo(a)anthracene	ND		0.040	μg/L	1	12/2/2013 05:59 PM		
Benzo(a)pyrene	ND		0.080	μg/L	**	12/2/2013 05:59 PM		
Benzo(b)fluoranthene	ND		0.090	μg/L	1	12/2/2013 05:59 PM		
Benzo(b-k)fluoranthene	ND		0.11	μg/L	1	12/2/2013 05:59 PM		
Benzo(g,h,i)perylene	ND		0.080	μg/L	1	12/2/2013 05:59 PM		
Benzo(k)fluoranthene	ND		0.050	μg/L	1	12/2/2013 05:59 PM		
Chrysene	ND		0.050	μg/L	1	12/2/2013 05:59 PM		
Dibenzo(a,h)anthracene	ND		0.080	μg/L	1	12/2/2013 05:59 PM		
Fluoranthene	ND		0.070	μg/L	1	12/2/2013 05:59 PM		
Fluorene	ND		0.050	μg/L	1	12/2/2013 05:59 PM		
Indeno(1,2,3-cd)pyrene	ND		0.070	μg/L	1	12/2/2013 05:59 PM		
Naphthalene	ND		0.070	μg/L	1	12/2/2013 05:59 PM		
Phenanthrene	ND		0.080	μg/L	1	12/2/2013 05:59 PM		
Pyrene	ND		0.050	μg/L	1	12/2/2013 05:59 PM		
Surr: 2-Fluorobiphenyl	51.0		10-112	%REC	1	12/2/2013 05:59 PM		
Surr: 4-Terphenyl-d14	71.2		10-132	%REC	1	12/2/2013 05:59 PM		
Surr: Nitrobenzene-d5	51.0		15-110	%REC	1	12/2/2013 05:59 PM		
VOLATILE ORGANIC COMPOUNDS			SW826	0		Analyst: AK		
1.1.1-Trichtoroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM		
1.1.2.2~Tetrachloroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM		
1,1,2-Trichloroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM		
1.1-Dichloroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM		
1,1-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 05:43 AM		
1,2-Dichloroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM		

Note:

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

TMW-3

Collection Date: 11/21/2013 11:30 AM

Work Order: 13111254

Lab ID: 13111254-29

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
1,2-Dichloropropane	ND		2.0	μg/L	1	11/30/2013 05:43 AM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 05:43 AN
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 05:43 AN
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 05:43 AN
Acetone	ND		20	μg/L	1	11/30/2013 05:43 AN
Benzene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Bromoform	ND		1.0	µg/L	1	11/30/2013 05:43 AM
Bromomethane	ND		1.0	μg/L	1	11/30/2013 05:43 AM
Carbon disulfide	ND		2.5	μg/L	1	11/30/2013 05:43 AM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Chlorobenzene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Chloroethane	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Chloroform	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Chloromethane	ND		1.0	μg/L	1	11/30/2013 05:43 AN
cis-1.2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Dibromochloromethane	ND		1.0	μg/Ĺ	1	11/30/2013 05:43 AN
Ethylbenzene	ND		1.0	µg/L	1	11/30/2013 05:43 AN
m,p-Xylene	ND		2.0	µg/L	1	11/30/2013 05:43 AN
Methylene chloride	ND		5.0	μg/L	1	11/30/2013 05:43 AM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Styrene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Tetrachloroethene	ND		2.0	μg/L	1	11/30/2013 05:43 AN
Toluene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
trans-1,2-Dichloroethene	ND		1.0	µg/L	1	11/30/2013 05:43 AN
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 05:43 AN
Vinyl chloride	ND		1.0	μg/L	1	11/30/2013 05:43 AN
1,2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 05:43 AM
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	11/30/2013 05:43 AN
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 05:43 AN
Surr: 1,2-Dichloroethane-d4	114		70-120	%REC	1	11/30/2013 05:43 AM
Surr: 4-Bromofluorobenzene	96.6		75-120	%REC	1	11/30/2013 05:43 AM
Surr: Dibromofluoromethane	107		85-115	%REC	1	11/30/2013 05:43 AM
Surr: Toluene-d8	93.3		85-120	%REC	1	11/30/2013 05:43 AN

Date: 13-Dec-13

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Trip Blank

Collection Date: 11/21/2013

Work Order: 13111254

Lab ID: 13111254-30

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	•		SW826	0		Analyst: AK
1,1,1-Trichioroethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
1.1.2.2-Tetrachioroethane	ND		1.0	µg/L	1	11/30/2013 12:52 PM
1.1.2-Trichloroethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
1.1-Dichloroethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
1,1-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
1.2-Dichloroethane	ďΝ		1.0	μg/L	1	11/30/2013 12:52 PM
1,2-Dichloropropane	ND		2.0	μg/L	1	11/30/2013 12:52 PM
2-Butanone	ND		5.0	μg/L	1	11/30/2013 12:52 PM
2-Hexanone	ND		5.0	μg/L	1	11/30/2013 12:52 PM
4-Methyl-2-pentanone	ND		5.0	μg/L	1	11/30/2013 12:52 PM
Acetone	ND		20	μg/L	1	11/30/2013 12:52 PM
Benzene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Bromodichloromethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Bromoform	ND		1.0	µg/L	1	11/30/2013 12:52 PM
Bromomethane	ND		1.0	µg/L	1	11/30/2013 12:52 PM
Carbon disulfide	ND		2.5	μg/L	1	11/30/2013 12:52 PM
Carbon tetrachloride	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Chlorobenzene	ND		1.0	µg/L	1	11/30/2013 12:52 PM
Chloroethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Chloroform	ND		1.0	µg/∟	1	11/30/2013 12:52 PM
Chloromethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
cis-1,2-Dichloroethene	ND		1.0	µg/L	1	11/30/2013 12:52 PM
cis-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Dibromochioromethane	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Ethylbenzene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
m,p-Xylene	ND		2.0	μg/L	1	11/30/2013 12:52 PM
Methylene chloride	ND		5.0	µg/L	1	11/30/2013 12:52 PM
o-Xylene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Styrene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Tetrachloroethene	ND		2.0	μg/L	1	11/30/2013 12:52 PM
Toluene	ND		1.0	µg/L	1	11/30/2013 12:52 PM
trans-1,2-Dichloroethene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
trans-1,3-Dichloropropene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Trichloroethene	ND		1.0	μg/L	1	11/30/2013 12:52 PM
Vinyl chioride	ND		1.0	μg/L	1	11/30/2013 12:52 PM
1.2-Dichloroethene, Total	ND		2.0	μg/L	1	11/30/2013 12:52 PM
1,3-Dichloropropene, Total	ND		2.0	μg/L	1	11/30/2013 12:52 PM
Xylenes, Total	ND		3.0	μg/L	1	11/30/2013 12:52 PM
Surr: 1,2-Dichloroethane-d4	108		70-120	%REC	1	11/30/2013 12:52 PM

Client:

Triad Engineering, Inc.

Project:

Johns Manville-Riverside Parcels

Sample ID:

Trip Blank

Collection Date: 11/21/2013

Date: 13-Dec-13

Work Order: 13111254

Lab ID: 13111254-30

Matrix: WATER

Analyses	Result	Result Qual		Units	Dilution Factor	Date Analyzed
Surr: 4-Bromofluorobenzene	108		75-120	%REC	1	11/30/2013 12:52 PM
Surr: Dibromofluoromethane	98.5		85-115	%REC	1	11/30/2013 12:52 PM
Surr: Toluene-d8	113		85-120	%REC	1	11/30/2013 12:52 PM

Date: 13-Dec-13

QC BATCH REPORT

Client:

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53658	Instrument ID HG1		Method	d: SW747	1					
MBLK	Sample ID: MBLK-53658-53658				Units: mg/l	Kg	Analysis	Date: 12	2/2/2013 02:11 PM	
Client ID:	Run ID	: HG1_13	31202A		SeqNo: 256 1	1966	Prep Date: 11/25	5/2013	DF: 1	
Analyte	Result	PQL	SPK Vai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.020								
LCS	Sample ID: LCS-53658-53658				Units: mg/l	Kg	Analysis	Date: 12	2/2/2013 0	2:14 PM
Client ID:	Run ID	: HG1_13	31202A		SeqNo: 256 1	1967	Prep Date: 11/25	5/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1755	0.020	0.1665		0 105	80-120	0			
MS	Sample ID: 13111249-05BMS		Units: mg/l	Kg	Anaiysis	s Date: 12	2/2/2013 0	2:53 PM		
Client ID:	Run IC		SeqNo: 256 1	1983	Prep Date: 11/25	5/2013	DF: 1			
Analyte	Resuit	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1978	0.019	0.1586	0.0334	14 104	75-125	0			
MS	Sample ID: 13111249-06BMS	e ID: 13111249-06BMS				Kg	Analysis	Date: 12	2/2/2013 0	3:00 PM
Client ID:	Run ID	: HG1_10	31 2 02A		SeqNo: 256 1	1986	Prep Date: 11/25	5/2013	DF:1	
[Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1729	0.017	0.1415	0.0222	21 107	75-125	0			
MSD	Sample ID: 13111249-05BMSD				Units: mg/	Kg	Analysis	Date: 12	2/2/2013 0	2:55 PM
Client ID:	Run ID	: HG1_1	31202A		SeqNo: 256 ′	1984	Prep Date: 11/25	5/2013	DF: 1	
Analyte	Result	PQL	\$PK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.2063	0.019	0.1591	0.0334	14 109	75-125	0.1978	4.21	35	
MSD	Sample ID: 13111249-06BMSD				Units: mg/	Kg	Analysis	Date: 12	2/2/2013 0	3:03 PM
Client ID:	Run ID	Run ID: HG1_131202 A			SeqNo: 256 1	1987	Prep Date: 11/25	5/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.1747	0.017	0.1431	0.0222	21 107	75-125	0.1729	1.02	35	×
The following san	nples were analyzed in this batch:	13	3111254-01E 3111254-04E 3111254-07E	3 13	111254-02B 111254-05B		111254-03B 111254-06B			

Triad Engineering, Inc.

Work Order:

13111254

Project:	Johns Manville-Riverside Par	cels								
Batch ID: 53776	Instrument ID HG1		Metho	d: SW747	0					
MBLK	Sample ID: MBLK-53776-53776		Units: mg/	L	Analysis Date: 12/4/2			/2013 11:48 AM		
Client ID:	Run	ID: HG1_1	31 20 4A		SeqNo:2564	1542	Prep Date: 12	/3/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	ND	0.00020								
LCS	Sample ID: LCS-53776-53776				Units: mg/	L	Analy	sis Date: 1	2/4/2013 1	1:51 AM
Client ID:	Run ID: HG1_131204A				SeqNo:2564	15 43	Prep Date: 12	/3/2013	DF: 1	
Anaiyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.002037	0.00020	0.002		0 102	80-120		0		
MS	Sample ID: 13111249-07CMS				Units: mg/	L	Analy	/sis Date: 1	2/4/2013 1	1:56 AM
Client ID:	Run	ID: HG1_1	31204A		SeqNo:2564	1 545	Prep Date: 12	/3/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury	0.001852	0.00020	0.002	-0.0000	11 93.2	7 5-1 2 5		0		
MSD	Sample ID: 13111249-07CMSD		Units:mg/	L	Analy	sis Date: 1	2/4/2013 1	1:58 AM		
Client ID:	Run	ID: HG1_1	31204A		SeqNo:2564	1546	Prep Date: 12	/3/2013	DF: 1	
!				SPK Ref		Control	RPD Ref		RPD Limit	

The following samples were analyzed in this batch:

Result

0.002091

PQL

0.00020

SPK Val

0.002

13111254-28C 13111254-29C

Value

-0.000011

Limit

75-125

%REC

Value

0.001852

Analyte

Mercury

QC BATCH REPORT

Limit

20

%RPD

12.1

Qual

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53778 Instrument ID HG1 Method: SW7471 Units: mg/Kg MBLK Sample ID: MBLK-53778-53778 Analysis Date: 12/4/2013 12:13 PM Client ID: Run ID: HG1_131204A SeqNo: 2564577 Prep Date: 12/3/2013 DF: 1 SPK Ref RPD Ref RPD Control Value Limit Value Limit PQL SPK Val %REC Analyte Result %RPD Qual ND Mercury 0.020 LCS Sample ID: LCS-53778-53778 Units:mg/Kg Analysis Date: 12/4/2013 12:16 PM Client ID: Run ID: HG1_131204A SeqNo: 2564578 Prep Date: 12/3/2013 DF: 1 SPK Ref RPD RPD Ref Control Value Limit Value Limit Result PQL SPK Val %REC Analyte %RPD Qual 0.1773 Mercury 0.020 0.1665 0 107 80-120 0 MS Sample ID: 13111254-24BMS Units: mg/Kg Analysis Date: 12/4/2013 01:22 PM Client ID: SB-11 Run ID: HG1_131204A SeqNo:2564828 Prep Date: 12/3/2013 DF: 1 SPK Ref RPD Ref RPD Control Limit Value Limit Value PQL SPK Val Qual Analyte Result %REC %RPD Mercury 0.1355 0.014 0.116 0.02366 96.4 75-125 0 MSD Sample ID: 13111254-24BMSD Units: mg/Kg Analysis Date: 12/4/2013 01:25 PM Client ID: SB-11 Run ID: HG1_131204A SeqNo:2564829 Prep Date: 12/3/2013 DF: 1 RPD SPK Ref RPD Ref Control Value Value Limit %RPD Result PQL SPK Val %REC Analyte Qual 0.1498 Mercury 0.014 0.1192 0.02366 106 75-125 0.1355 9.97 35 The following samples were analyzed in this batch: 13111254-08B 13111254-09B 13111254-10B 13111254-11B 13111254-12B 13111254-13B 13111254-15B 13111254-14B 13111254-16B 13111254-17B 13111254-18B 13111254-19B 13111254-20B 13111254-21B 13111254-22B 13111254-23B 13111254-24B 13111254-25B 13111254-26B 13111254-27B

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53677	Instrument ID ICPMS2		Method	d: SW602	0A							
MBLK	Sample ID: MBLK-53677-53677				Un	its: mg/l	 L	Analysis Date: 11/30/2013 05:56 All				
Client ID:	Run I	D: ICPMS:	2_131127A		Seql	SeqNo:2559943		Prep Date: 11	/26/2013	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	ND	0.0050										
Barium	ND	0.0050										
Chromium	ND	0.0050										
Lead	ND	0.0050										
Selenium	ND	0.0050										
Silver	ND	0.0050										
MBLK	Sample ID: MBLK-53677-53677				Llo	its:mg/l	ı	Analı	sis Date: 1	412012043	DEVEC AR	
	•	D. IODIAC	1 4244070			_					03.30 AII	
Client ID:	Run i	D: ICPNIS:	2_131127B		Seqi	No: 256 0	1243	Prep Date: 11	12612013	DF: 1		
				SPK Ref			Control	RPD Ref		RPD Limit		
Analyte	Result	PQL	SPK Val	Value	•	%REC	Limit	Value	%RPD	Limit	Qual	
Cadmium	0.000191	0.0020								·	J	
LCS	Sample ID: LCS-53677-53677				Un	its:mg/l	L	Апаіз	sis Date: 1	1/30/2013	06:01 AN	
Client ID:	Run I	D: ICPMS:	2_131127A		Seq	No: 255 9	9944	Prep Date: 11	/26/2013	DF: 1		
				SPK Ref			Control	RPD Ref		RPD		
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Arsenic	0.09822	0.0050	0.1		0	98.2	80-120		0			
Barium	0.09546	0.0050	0.1		0	95.5	80-1 2 0		0			
Chromium	0.09666	0.0050	0.1		0	96.7	80-120		0			
Lead	0.09398	0.0050	0.1		0	94	80-120		0			
Selenium	0.09836	0.0050	0.1		0	98.4	80-120		0			
Silver	0.1046	0.0050	0.1		0	105	80-120		0			
LCS	Sample ID: LCS-53677-53677				Un	its: mg/l	L	Anaiy	sis Date: 1	1/30/2013	06:01 AN	
Client ID;	Run I	D: ICPMS:	2_131127B		Seql	No: 2560	1244	Prep Date: 11	/26/2013	DF: 1		
				SPK Ref			Control	RPD Ref		RPD		
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Cadmium	0.09759	0.0020	0.1		0	97.6	80-1 2 0		0			
MS	Sample ID: 13111249-07CMS				Un	its: mg/l	L	Analy	rsis Date: 1	1/30/2013	06:41 AN	
Client ID:	·	D: ICPMS:	2_131127A			No: 25 59		Prep Date: 11		DF: 1		
				SPK Ref			Control	RPD Ref		RPD		
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual	
Arsenic	0.1026	0.0050	0.1	0.00335	57	99.2	75-125		0			
Barium	0.2433	0.0050	0.1	0.142		101	75-125		0			
Chromium	0.09591	0.0050	0.1	0.00135		94.6	75-125		0			
Selenium	0.101	0.0050	0.1	0.00203	35	99	75-125		0			
Silver	0.1005	0.0050	0.1	-3.486E-0		101	75-125		0			

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53677	Instrument ID ICPMS2		Method	i: SW6020A	V.W					
MS	Sample ID: 13111249-07CMS			(Jnits: mg/	L	Analys	is Date: 11	/30/2013	06:41 AN
Client ID:	Run 1	D: ICPMS:	2_131127B	Se	eqNo:2560	0251	Prep Date: 11/2	6/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	0.09582	0.0020	0.1	0.0001421	95.7	75-125	0			
MS	Sample ID: 13111249-07CMS				Jnits: mg/	L	Anaiysi	is Date: 12	/4/2013 0	5:21 PM
Client ID:	Run I	D: ICPMS:	2_131204A	Se	eqNo:256	5851	Prep Date: 11/2	6/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Lead	0.0997	0.025	0.1	0.0001082	99.6	75-12 5	0			
MSD	Sample ID: 13111249-07CMSD			ι	Jnits: mg/	L	Anaiysi	is Date: 11	/30/2013	06:47 AN
Client ID:	Run I	D: ICPMS:	2_131127A	SeqNo: 255995 2			Prep Date: 11/2	6/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	0.1046	0.0050	0.1	0.003357	101	75-125	0.1026	1.93	20	-
Barium	0.2451	0.0050	0.1	0.1427	102	7 5-125	0.2433	0.737	20	
Chromium	0.09701	0.0050	0.1	0.001357	95.7	7 5-125	0.09591	1.14	20	
Selenium	0.1011	0.0050	0.1	0.002035	99.1	75-125	0.101	0.099	20	
Silver	0.1012	0.0050	0.1	-3.486E-06	101	75-125	0.1005	0.694	20	
MSD	Sample ID: 13111249-07CMSD			l	Jnits: mg/	L	Analysi	s Date: 11	/30/2013	06:47 AN
Client ID:	Run I	D: ICPMS:	2_1 31127 B	Se	eqNo: 256 0	0252	Prep Date: 11/2	6/2013	DF: 1	
Aпаlyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cadmium	0.09477	0.0020	0.1	0.0001421	94.6	75-125	0.09582	1.1	20	
MSD	Sample ID: 13111249-07CMSD				Jnits:mg/	L	Analysi	s Date: 12	/4/2013 0	5:27 PM
Client ID:	Run f	D: ICPMS:	2_131204A	Se	eqNo:256	5852	Prep Date: 11/2	6/2013	DF: 5	
	ъ	B 01	ODIC	SPK Ref Value	0/555	Control Limit	RPD Ref Value	0/ 000	RPD Limit	Oriel
Analyte	Result	PQL	SPK Val	value	%REC	LITTIN	value	%RPD	Limit	Qual
Lead	0.0989	0.025	0.1	0.0001082	98.8	75-125	0.0997	0.806	20	

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53682	Instrument ID ICPMS1		Method	i: SW602	20A						
MBLK	Sample ID: MBLK-53682-53682				Ur	nits: mg/ i	 Кg	Analy	sis Date: 1	1/27/2013	01:31 AM
Client ID:	Run II	: ICPMS1	_131126A		Seq	No:2557	7306	Prep Date: 11/26/2013		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND	0.25									
Cadmium	0.00735	0.10								F1.14	J
Chromium	ND	0.25									-
Lead	0.008315	0.25									J
Selenium	ND	0.25									
Silver	0.004834	0.25									J
MBLK	Sample ID: MBLK-53682-53682				Ur	nits: mg/l	Kg	Analy	sis Date: 1	1/27/2013	03:07 PM
Client ID:	Run IC	: ICPMS1	_131127A		Seq	No:2558	8829	Prep Date: 11	/26/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Barium	0.02538	0.25									J
LCS	Sample ID: LCS-53682-53682				Ur	nits: mg/l	Kg	Analy	sis Date: 1	1/27/2013	01:37 AM
Client ID:	Run II	: ICPMS1	_131126A		SeqNo: 2557307		Prep Date: 11	26/2013	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	4.55	0.25	5		0	91	80-120		0		
Barium	4.792	0.25	5		0	95.8	80-120		0		
Cadmium	4.78	0.10	5		0	95.6	80-120		<u>.</u>		
Chromium	4.899	0.25	5		0	98	80-120		0		
Lead	4.964	0.25	5		0	99.3	80-120		0		
Selenium	4.28	0.25	5		0	85.6	80-120	4	0		
Silver	5.49	0.25	5		0	110	80-120	(0		
MS	Sample ID: 13111150-03AMS		V		Un	its:mg/l	 Кg	Anaiy	sis Date: 1	1/27/2013	02:51 AM
Client ID:	Run (C	: ICPMS1	_131126A		Seq	No:2557	317	Prep Date: 11/	26/2013	DF: 1	
				SPK Ref			Contro!	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	7.452	0.37	7.452	0.908	54	87.8	75-125	(כ		
Barium	15.33	0.37	7.452	9.82	28	73.8	75-125	(0		S
Cadmium	7.108	0.15	7.452	0.018	81	95.1	75-125	- (0		
Chromium	9.344	0.37	7,452	2.00	01	98.6	75-125)		
Lead	8.867	0.37	7.452	1.54	46	98.3	75-125	(כ		
Selenium	6.27	0.37	7.452	0.278	87	80.4	75-125)		
Silver	7.876	0.37	7.452	0.0073	57	106	75-125	()		

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Trojece.	Johns Many Me-Idverside 1 area	213								
Batch ID: 53682	Instrument ID ICPMS1		Method	i: SW6020 A						
MSD	Sample ID: 13111150-03AMSD				Units: mg/	Kg	Analys	is Date: 11	/27/2013	02:57 AM
Client ID:	lient ID: Run ID: ICPMS1_131126A			S	eqNo: 25 5	7318	Prep Date: 11/2	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	7.601	0.37	7.474	0.9054	89.6	75-125	7.452	1.98	25	
Barium	15.79	0.37	7,474	9.828	79.8	75-125	15.33	2.98	25	
Cadmium	7.226	0.15	7.474	0.0181	96.4	75-125	7.108	1.65	25	
Chromium	9.529	0.37	7.474	2.001	101	75-125	9.344	1.96	25	
Lead	9.073	0.37	7.474	1.546	101	75-125	8.867	2.3	25	
Selenium	6.303	0.37	7.474	0.2787	80.6	75-125	6.27	0.524	25	
Silver	7.93	0.37	7 474	0 007357	106	75-125	7.876	0.676	25	

The following samples were analyzed in this batch:

13111254-15B	13111254-16B	13111254-Ì7B
13111254-18B	13111254-19B	13111254-20B
13111254-21B	13111254-22B	13111254-23B
13111254-24B	13111254-25B	13111254-26B

Triad Engineering, Inc.

Work Order: Project:	13111254 Johns Manville-Riverside Par	cels									
Batch ID: 53719	Instrument ID ICPMS1		Method	d: SW602	0A				~~~~		
MBLK	Sample ID: MBLK-53719-53719				Į	Jnits: mg/f	≺g	Analy	sis Date: 1	1/27/2013	08:14 PM
Client ID:	Run	ID: ICPMS	1_131127A		Se	qNo:2559	538	Prep Date: 11/	27/2013	DF: 1	
Analyte	Result	PQL	SPK Vai	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND ND	0.25 0.25									
Barium Cadmium	_0.001787 ND	0.10									J
Chromium Lead	0.002992 ND	0.25									J
Selenium Silver	0.002124	0.25									J
LCS	Sample ID: LCS-53719-53719				ι	Jnits: mg/l	√g	Anaiy	sis Date: 1	1/27/2013	08:20 PM
Client ID:	Run	ID: ICPMS	1_131127A		Se	eqNo: 255 9	539	Prep Date: 11/	27/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	4,49	0.25	5		0	89.8	80~120	()		
Barium	4.84	0.25	5		Û	96.8	80-120	(0		
Cadmium	4.705	0.10	5		0	94.1	80-120	(C		
Chromium	4.865	0.25	5	core to a company day reason company	0	97.3	80-120	()		
Lead	4.964	0.25	5		0	99.3	80-120	(9		
Selenium	4.236	0.25	5		0	84.7	80-120)	······································	
Silver	5.395	0.25	5		0	108	80-120	(Ó	~	
MS	Sample ID: 13111229-20BMS				ι	Jnits: mg/ i	≺g	Anaiy	sis Date: 1	1/ 2 7/ 201 3	10:54 PM
Client ID:	Run	ID: ICPMS	1_131127A		Se	qNo:2559	564	Prep Date: 11/	27/2013	DF: 5	
				SPK Ref			Control	RPD Ref		RPD	

MS	Sample ID: 13111229-20BMS	1	Units: mg/i	Kg	Analysis Date: 11/27/2013 10:54 I					
Client ID:	Run ID	:ICPMS	I_131127A	Se	eqNo:2559	564	Prep Date: 11/2	27/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	15.55	1.8	7.236	7.207	115	75-125	0			
Barium	91.53	1.8	7.236	74.28	238	75-125	0			so
Cadmium	7.677	0.72	7.236	0.305	102	75-125	0			
Chromium	29.41	1.8	7.236	20.75	120	7 5-125	0			
Lead	21.34	1.8	7.236	11.88	131	75-125	0			S
Selenium	7.876	1.8	7.236	0.9946	95.1	75-125	0			
Silver	7.648	1.8	7.236	0.04574	105	75-125	0			

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

110,000.	Johns Man The Terreiside Fare	,10								
Batch ID: 53719	Instrument ID ICPMS1	***********************	Method	d: SW6020A						
MSD	Sample ID: 13111229-20BMSD			ļ	Units: mg/	Kg	Analys	s Date. 11	/27/2013	11:01 PM
Client ID:	Run ID	: ICPMS	1_131127A	Se	eqNo: 255 !	9565	Prep Date: 11/2	7/2013	DF: 5	
Analyte	Result	PQL	SPK Vai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	14.66	1.8	7.092	7.207	105	75-125	15.55	5.89	25	
Barium	84.72	1.8	7.092	74.28	147	75-125	91.53	7.74	25	so
Cadmium	7.596	0.71	7.092	0.305	103	75-125	7.677	1.07	2 5	
Chromium	28.78	1.8	7.092	20.75	113	75-125	29.41	2.17	25	
Lead	19.54	1,8	7.092	11.88	108	75-125	21.34	8.8	25	
Selenium	7.61	1.8	7.092	0.9946	93.3	75-125	7.876	3.44	25	
Silver	7.574	1.8	7.092	0.04574	106	75-125	7.648	0.97	25	

The following samples were analyzed in this batch:

13111254-27B

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Project:	Johns Manville-Riverside Parce	:15										
Batch ID: 53721	Instrument ID tCPMS1		Metho	d: SW602	0A							
MBLK	Sample ID: MBLK-53721-53721				Uı	nits: mg/l	Kg	Anaiy	sis Date: '	11/27/2013	11:50 PM	
Client ID:	Run ID	: ICPMS1	_131127A		Sec	No:2559	9573	Prep Date: 11/	27/2013	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	ND	. 0.25										
Cadmium	ND ND	0.10										
Chromium	0.07185	0.25									J	
Selenium	ND	0.25										
Silver	ND	0.25										
MBLK	Sample ID: MBLK-53721-53721				U	nits: mg/l	Kn	Anaty	sis Date: 1	12/10/2013	06:08 Pf	
Client ID:		ICPMS2	_131210A			No:2573	_	Prep Date: 11/	nalysis Date: 12/10/2013 06:08 PM -11/27/2013 DF: 1			
CILCIN ID.	Name	. 101 1102	_151210A		-	41 10. Z 01 C			LIILUIU			
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Lead	0.003001	0.25						10000000			J	
LCS	Sample ID: LCS-53721-53721				U	nits: mg/l	Kg	Anaiy	sis Date: 1	11/27/2013	11:57 PI	
Client ID:	Run ID	: ICPMS1		SeqNo:2559574		Prep Date: 11/27/2013		DF: 1				
Anaiyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	4.524	0.25	5		0	90.5	80-120)	•••		
Cadmium	4.674	0.10	5		0	93.5	80-120)			
Chromium	4.789	0.25	5		0	95.8	80-120	()			
Selenium	4.142	0.25	5		0	82.8	80-120	()			
Silver	5 .2 6	0.25	5		0	105	80-120	()	·		
LCS	Sample ID: LC\$-53721-53721				U	nits: mg/l	Kg	Analy	sis Date: '	12/10/2013	06:14 PI	
Client ID:	Run ID	: ICPMS2	_131210A		Sec	įNo:2573	3171	Prep Date: 11/	27/2013	DF:1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Lead	4.808	0.25	5		0	96.2	80-120	()			
MS	Sample ID: 13111249-05BMS				Ui	nits: mg/l	Kg	Analy	sis Date: *	11/28/2013	02:13 AN	
Client ID:	•	: ICPMS1	_1311 2 7A			No:2559		Prep Date: 11/		DF: 5		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Arsenic	31.21	1.9	7.418	24	.8	86.4	75-125	()			
Cadmium	8.568	0.74	7,418	5.02		47.7	75-125)		s	
Chromium	185.3	1.9	7.418	68.8		1570	75-125	()		SO	
Lead	43.66	1.9	7.418	39.9	93	50.2	75-125	t)		so	
Selenium	8.383	1.9	7.418	1.15	54	97.4	75-125	()			
Silver	8.524	1.9	7.418	0.595	58	107	75-125	()			

Triad Engineering, Inc.

Work Order:

13111254

Project:	Johns Manville-Riverside Parce	ls								
Batch ID: 53721	Instrument ID ICPMS1		Method	: SW6020A						
MS	Sample ID: 13111249-06BMS				Jnits: mg/	Kg	Analysi	s Date: 11	/28/2013	03:09 AM
Client ID:	Run ID:	ICPMS	1_131127A	Se	eqNo: 255 9	9603	Prep Date: 11/2	7/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	13,68	1.8	7.042	7.357	89.8	75-125	0			
Cadmium	7.616	0.70	7.042	0.9234	95	75-125	0			
Chromium	21.99	1.8	7.042	13.4	122	75-125	0			
Lead	17.54	1.8	7.042	18.23	-9.93	75-125	0			s
Selenium	7.634	1.8	7.042	0.9248	95.3	75-125	0			
Silver	7.901	1.8	7.042	0.1079	111	75-125	0			
MSD	Sample ID: 13111249-05BMSD			(Jnits: mg/	Kg	Analys	s Date: 11	/28/2013	02:19 AM
Client ID:	Run ID:	: ICPMS	1_131127A	SeqNo:2559597			Prep Date: 11/2	DF: 5		
Analyta	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte	Kesus		OF IX Vai		/01 \L.Q			70131 D		Guar
Arsenic	29.01	1.9	7.496	24.8	56.2	75-125	31.21	7. 3	25	S
Cadmium	8.261	0.75	7,496	5.0 2 6	43.1	75-125	8.568	3.6 5	25	S
Chromium	65.48	1.9	7.496	68.82	-44.5	75-125	185.3	95.6	2 5	SRO
Lead	40.85	1.9	7.496	39.93	12.3	75-125	43.66	6.63	2 5	SO
Selenium	7.976	1.9	7.496	1.154	91	75-125	8.383	4.97	2 5	
Silver	8.25	1.9	7,496	0,5958	102	75-125	8.524	3.27	25	
MSD	Sample ID: 13111249-06BMSD				Units: mg/	Kg	Analysi	s Date: 11	/28/2013	03:34 AM
Client ID:	Run ID	ICPMS	1_131127A	Se	eqNo: 255 9	9607	Prep Date: 11/2	7/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Controf Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	14.22	1.7	6.983	7.357	98.3	75-125	13.68	3.88	25	
Cadmium	7.703	0.70	6.983	0.9234	97.1	75-125	7.616	1.13	25	
Chromium	21.74	1.7	6.983	13.4	119	75-125	21.99	1.13	25	
Lead	18.19	1.7	6.983	18.23	-0.571	75-125	17.54	3.69	25	s
Selenium	7.524	1.7	6.983	0.9248	94.5	75-125	7.634	1.44	25	
Silver	7.874	1.7	6.983	0.1079	111	75-12 5	7.901	0.353	25	
The following sar	nples were analyzed in this batch:	13	3111 2 54-01E 3111254-04E 3111254-0 7 E	13111	1254-02B 1254-05B 1254-08B	13	111254-03B 111254-06B 111254-09B			

13111254-01B	13111254-02B	13111254-03B
13111254-04B	13111254-05B	13111254-06B
13111254-07B	13111254-08B	13111254-09B
13111254-10B	13111254-11B	13111254-12B
13111254-13B	13111254-14B	

Triad Engineering, Inc.

Work Order:

13111254

Project:	Johns Manville-Riverside Parce										
Batch ID: 54069	Instrument ID ICPMS2		Metho	d: SW602	20A						
MBLK	Sample ID: MBLK-54069-54069				ι	Jnits: mg/l	Kg	Analy	sis Date: 1	2/11/2013	08:22 PM
Client ID:	Run ID	: ICPMS:	2_131211A		Se	qNo:2575	5204	Prep Date: 12	11/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	ND	0.25									
Barium	ND	0.25									
Cadmium	ND	0.10									
Chromium	ND	0.25									
Lead	ND	0.25									
Selenium	ND	0.25									
Silver	ND	0.25								~	
LCS	Sample ID: LCS-54069-54069				L	Jnits: mg/l	Kg	Analy	sis Date: 1	2/11/2013	08:27 PM
Client ID:	Run 1D	:ICPMS	2_131211A		Se	qNo:2575	5207	Prep Date: 12/	11/2013	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	4.74	0.25	5		0	94.8	80-120	()		
Barium	4.902	0.25	5		0	98	80-120)		
Cadmium	4.584	0.10	5		0	91.7	80-120)		
Chromium	4.768	0.25	5		0	95.4	80-120	()		
Lead	4.798	0.25	5		0	96	80-120	()		
Selenium	4.69	0.25	5		0	93.8	80-120	()		
Silver	4.504	0,25	5		0	90.1	80-120	()		
MS	Sample ID: 13111249-05BMS				L	Jnits: mg/ l	Kg	Analy	sis Date: 1	2/11/2013	09:27 PM
Client ID:	Run ID	: ICPMS:	2_131211A		Se	qNo:2575	5235	Prep Date: 12	11/2013	DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	28.63	1.6	6.394	17.	GE.	167	75-125)		s
Barium	126.7	1.6	6,394	188		-970	75-125)		so
Cadmium	6,509	0.64	6.394	0.39		95.6	75-125)		
Chromium	52.65	1.6	6.394	67.		-230	75-125)		so
Lead	35.33	1.6	6.394	35.		-1.75	75-125		<u> </u>		so
Loud	00.00	1.0	0,004	50.		1.15	10 120	,	•		00

Selenium Silver 6.816

5.748

1.6

1.6

6,394

6.394

0.7766

0.03103

94.5

89.4

75-125

75-125

0

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 54069	Instrument ID ICPMS2		Method	SW6020A			- W. F. L.	.w.,w.		4-114-7-1
MS	Sample ID: 13111249-06BMS				Jnits: mg/l	Кд	Analysi	s Date: 12	/11/2013	09:54 PN
Ciient ID:	Run II	: ICPMS	2_131211A	Se	q N o: 25 75	5247	Prep Date: 12/11/2013		DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Controi Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	14.57			7.000		75 405	0			
Arsenic Barium	127,6	1.7 1.7	6.711 6.711	7.233 104.5	109 3 4 4	75-125 75-125	0			so
Cadmium	6.919	0.67	6.711	0.1462	101	75-125	0			30
Chromium	22.05	1.7	6.711	11.99	150	75-125	0			s
Lead	22.07	1.7	6.711	10.89	167	75-125	0			s
Selenium	7.55	1.7	6.711	0.8464	99.9	75-125	0			_
Silver	6.03	1.7	6.711	0.03393	89.3	75-125	0			
MSD	Sample ID: 13111249-05BMSD			Units: mg/Kg			Analys	/11/2013	09:32 PN	
Client ID:	Run II	: ICPMS	2_131211A	Se	qNo:2575	5237	Prep Date: 12/1	1/2013	DF: 5	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
Arsenic	24.34	1.6	6.427	17.96	99.2	75-12 5	28.63	16.2	2 5	
Barium	127.7	1.6	6.427	188.7	-950	75-12 5	126.7	0.765	2 5	S O
Cadmium	6.645	0.64	6.427	0.3985	97.2	75-125	6.509	2.07	25	
Chromium	50.16	1.6	6.427	67.35	-268	75-125	52.65	4.85	25	so
Lead	30.79	1.6	6.427	35.44	-72 .3	75-125	3 5.33	13.7	2 5	so
Selenium	6.922	1.6	6.427	0.7766	95.6	75-125	6.816	1.54	25	
Silver	5.755	1.6	6.427	0.03103	89.1	75-125	5.748	0.123	25	
MSD	Sample ID: 13111249-06BMSD			ι	Jnits: mg/	Kg	Analys	s Date: 12	/11/2013	09:59 PN
Client ID:	Run IC	D: ICPMS:	2_131211A	Se	eqNo: 25 7\$	5249	Prep Date: 12/1	1/2013	DF: 5	
Analyte	Result	- PQL	SPK Vai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Arsenic	13.31	1.7	6.739	7.233	90.2	75 -125	14.57	9.03	25	
Barium	118.6	1.7	6.739	104.5	209	75-125	127.6	7.33	25	so
Cadmium	6.57	0.67	6.739	0.1462	95.3	75-12 5	6.919	5.18	25	
Chromium	19.75	1.7	6.739	11.99	115	75-125	22.05	11	25	
Lead	19.66	1.7	6.739	10.89	130	75 -125	22.07	11.6	25	S
Selenium	6.924	1.7	6.739	0.8464	90.2	75-125	7.55	8.66	25	
Silver	5.96	1.7	6.739	0.03393	87.9	75-125	6.03	1.17	2 5	
The following sam	nples were analyzed in this batch:	13 13 13	111 2 54-01B 111254-04B 111254-07B 111254-10B 111254-13B	13111 13111 13111	254-02B 254-05B 254-08B 254-11B 254-14B	13 13	111254-03B 111254-06B 111254-09B 111254-12B	,		

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Metho	d: SW827	ом					
MBLK	Sample (D: SBLKS1-53684-53684				Units:µg/Kg		Analysis Date: 11/27/2013 08:39 PN			
Client ID:	Run ID: SVMS7_131127A				SeqNo:2562108		Prep Date: 11/27/2013		DF:1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	ND	3.3								
Acenaphthylene	ND	3.3								T. T. VIII T. T.
Anthracene	ND	3.3								
Benzo(a)anthracene	ND	3.3								
Benzo(a)pyrene	ND	3.3								
Benzo(b)fluoranthene	ND	3.3								
Benzo(b-k)fluoranthen	ie ND	6.7								
Benzo(e)pyrene	ND	10				•				
Benzo(g,h,i)perylene	ND	3.3								
Benzo(k)fluoranthene	ND	3.3								
Chrysene	ND	3.3								
Dibenzo(a,h)anthracer	ne ND	3.3								
Fluoranthene	ND	3.3								
Fluorene	ND	3.3								
indeno(1,2,3-cd)pyren	e ND	3.3								
Naphthalene	ND	3.3								
Phenanthrene	ND	3.3								
Pyrene	ND	3.3								
Surr: 2-Fluorobiphe	nyl 106	0	166.7		0 63.6	12-100		o		
Surr: 4-Terphenyl-d	172	0	166.7		0 103	25-137		0		
Surr: Nitrobenzene-	d5 111.7	0	166.7		0 67	37-107		0		

Triad Engineering, Inc.

Work Order:

Surr: Nitrobenzene-d5

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Metho	d: SW8270N	1						
LCS	Sample ID: SLCSS1-53684-53684				Units: µg/l	Kg	Analysis Date: 11/27/2013 01:30 PN				
Client ID:	Ru	Run ID: SVMS7_13			eqNo: 25 6	2101	Prep Date: 11/27/2013		DF: 1		
Analyte	Resul	PQL	SPK V al	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Acenaphthene	55	3.3	66.67	0	82.5	35-110	()			
Acenaphthylene	50.67	3.3	66.67	0	76	35-115	()			
Anthracene	56	3.3	66.67	0	84	45-12 5	()			
Benzo(a)anthracene	58	3.3	66.67	0	87	50-105	()			
Benzo(a)pyrene	60	3.3	66.67	0	90	40-135	()			
Benzo(b)fluoranthen	e 63.67	3.3	66.67	0	95.5	55-120	()			
Benzo(b-k)fluoranthe	ene 124.7	6.7	133.3	0	93.5	55-120	()			
Benzo(g,h,i)perylene	67.67	3.3	66.67	0	102	55-115	()			
Benzo(k)fluoranthen	e61	3.3	66.67	0	91.5	55-120	()			
Chrysene	62.67	3.3	66.67	0	94	55-120	(
Dibenzo(a,h)anthrac	ene 63	3.3	66.67	0	94.5	45-115	()			
Fluoranthene	62	3.3	66.67	0	93	40-135	()			
Fluorene	60.67	3.3	66.67	0	91	45-105	()			
Indeno(1,2,3-cd)pyre	ene 62.67	3.3	66.67	0	94	5 5-135	()			
Naphthalene	52,33	3.3	66.67	0	78.5	50-110	()			
Phenanthrene	54	3.3	66.67	0	81	55-125	()			
Pyrene	67	3.3	66.67	0	101	50-115)			
Surr: 2-Fluorobiph	enyl 115.7	0	16 6.7	O	69.4	12-100	•)			
Surr: 4-Terphenyl-	-d14 164.3	0	166.7	0	98.6	25-137)			

166.7

37-107

130.3

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Metho	d: SW8270M						
MS	Sample ID: 13111249-06B MS			1	Units: µg/k	(g	Analysis Date: 11/27/2013 04:15 PM			
Client ID:	Run	Run ID: SVMS7_131127A		SeqNo:2562102			Prep Date: 11/27/2013		DF:1	
Analyte	Result	PQL	SPK V al	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	106.3	6.4	128.8	0	82.5	35-110	0			
Acenaphthylene	95.99	6.4	128.8	0.6 5 85	74	35-115	0			
Anthracene	109,5	6.4	128.8	0.6585	84.5	45-125	0			
Benzo(a)anthracene	112.1	6.4	128.8	3.292	84.4	50-105	0			
Benzo(a)pyrene	117.9	6.4	128.8	4,28	88.2	40-135	0			
Benzo(b)fluorantnene	123.7	6.4	128.8	6,914	90.6	55-120	0			
Benzo(b-k)fluoranthe	ne 237.7	13	257.7	6.914	89.6	55-120	0			
Benzo(g,h,i)perylene	143.7	6.4	128.8	2.963	109	55-115	0			
Benzo(k)fluoranthene	114	6.4	128.8	1.975	87	55-120	0			
Chrysene	113.4	6.4	128.8	2.963	85.7	55-120	0			
Dibenzo(a,h)anthrace	ene 106.9	6.4	128.8	1.975	81.5	45-115	0			
Fluoranthene	125	6.4	128.8	3.951	93.9	40-135	0			
Fluorene	114	6.4	128.8	0	88.5	45-105	0			
Indeno(1,2,3-cd)pyrei	ne 112.1	6.4	128.8	3.292	84.4	55-135	0			
Naphthalene	88.26	6.4	128.8	0	68.5	50-110	Ō			
Phenanthrene	103.7	6.4	128.8	1.646	79.2	55-125	0			
Pyrene	124.3	6.4	128.8	4,609	92.9	50-115	0			
Surr: 2-Fluorobiphe	enyl 222.3	0	322.1	0	69	12-100	0	<u> </u>	<u> </u>	
Surr: 4-Terphenyl-	d14 284.1	0	322.1	0	88.2	25-137	0			
Surr: Nitrobenzene	-d5 248	0	322.1	0	77	37-107	0			

Triad Engineering, Inc.

Work Order:

Surr: Nitrobenzene-d5

13111254

Project:	Johns Manville-Riversid	е Рагс	els							
Batch ID: 53684	Instrument ID SVMS	7		Method	d: SW8270M					
MS	Sample ID: 13111249-05B	MS				Units: µg/F	(g	Analysis Date	e: 11/27/20 13	05:21 PM
Client ID:		Run II	D: SVMS7	_131127A	Se	eqNo: 256 ;	2104	Prep Date: 11/27/2013	DF: 10	
Analyte	R	esult	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RP	RPD D Limit	Qual
Acenaphthene	1	17.3	65	130.4	0	90	35-110	0		
Acenaphthylene	1	89.1	65	130.4	76.6	86.3	35-115	0		
Anthracene	1	43.4	65	130.4	19.98	94.7	45-125	0		
Benzo(a)anthracen	ne 3	65.1	65	130.4	226,5	106	50-105	0		s
Benzo(a)pyrene	4	04.2	65	130.4	273.1	101	40-135	0		
Benzo(b)fluoranthe	ne 4	82.4	65	130.4	496.2	-10.6	55-120	0		s
Benzo(b-k)fluoranti	hene 7	49.7	130	260.8	4 96.2	97.2	55-120	0		
Benzo(g,h,i)peryler	ne 3	91.2	65	130.4	246.4	111	55-115	0		•
Benzo(k)fluoranthe	ne 2	67.3	65	130.4	143.2	95.2	55-120	0		
Chrysene	3	58.6	65	130.4	216.5	109	55-120	0		
Dibenzo(a,h)anthra	icene 1	89.1	65	130.4	53.28	104	45-115	0		
Fłuoranthene		502	65	130.4	286.4	165	40-135	0		S
Fluorene	1	17.3	65	130.4	3.33	87.4	45-105	0		
Indeno(1,2,3-cd)py	rene 3	12.9	6 5	130.4	186.5	97	55-135	0		
Naphthalene	9	7.79	65	130.4	3.33	72.4	50-110	0		
Phenanthrene	1	89.1	65	130.4	36.63	117	55-125	G		
Pyrene	5	73.7	65	130.4	369.7	156	50-115	0		s
Surr: 2-Fluorobit	ohenyi 2	08.6	0	326	0	64	12-100	G		
Surr: 4-Terpheny	yl-d14 3	32.5	0	326	0	102	25-137	0		

326

64 37-107

208.6

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7	······································	Metho	d: SW8270M						
MSD	Sample ID: 13111249-06B MSD			l	Jnits:µg/k	ζg	Analysis Date: 11/27/2013 04:48 PN			
Cilent ID:	Run ID	: SVMS7	_131127A	SeqNo:2562103			Prep Date: 11/2	7/2013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref V alue	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	103.2	6.3	125.8	0	82	35-110	106.3	2.98	40	
Acenaphthylene	93.74	6.3	125.8	0.6585	74	35-115	95.99	2.37	40	
Anthracene	105.1	6.3	125.8	0.6585	8 3	45-125	109.5	4.15	40	
Benzo(a)anthracene	109.5	6.3	125.8	3.292	84.4	50-105	112.1	2.37	40	
Benzo(a)pyrene	111.4	6.3	125.8	4,28	85.1	40-135	117.9	5.71	40	
Benzo(b)fluoranthene	121.4	6.3	125.8	6,914	91	55-120	123.7	1.86	40	
Benzo(b-k)fluoranther	ne 230.9	13	251.7	6.914	89	55-120	237.7	2.92	40	
Benzo(g,h,i)perylene	129.6	6.3	125.8	2.963	101	55-115	143.7	10.3	40	
Benzo(k)fluoranthene	109.5	6.3	125.8	1.975	85.4	55-120	114	4.08	40	
Chrysene	108.8	6,3	125.8	2.963	84.1	55-120	113.4	4.09	40	
Dibenzo(a,h)anthrace	ne 107	6.3	125.8	1,975	83.4	45-11 5	106.9	0.00644	40	
Fluoranthene	120.8	6.3	125.8	3,951	92.9	40-135	125	3.41	40	
Fluorene	118.3	6.3	125.8	0	94	45-105	114	3.65	40	
Indeno(1,2,3-cd)pyrer	ne 112	6.3	125.8	3.292	86.4	55-135	112.1	0.102	40	
Naphthalene	94.37	6.3	125.8	0	75	50-110	88.26	6.69	40	
Phenanthrene	98.14	6.3	125.8	1.646	76.7	55-125	103.7	5.53	40	
Pyrene	122.7	6.3	125.8	4.609	93.8	5 0-115	124.3	1.34	40	
Surr: 2-Fluorobiphe	enyl 209.5	0	314.6	0	66.6	12-100	222.3	5.91	40	
Surr: 4-Terphenyl-c	114 290	0	314.6	0	92. 2	25-137	284.1	2,06	40	
Surr: Nitrobenzene	-d5 239.7	0	314.6	0	76.2	37-107	248	3.42	40	

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53684	Instrument ID SVMS7		Metho	d: SW8270M								
MSD S	Sample ID: 13111249-05B MSD	•		Units: µg/Kg Analysis Date: 11/27/2013 05								
Client ID:	Run ID	SVMS7_131127A		Se	eqNo: 256 2	2105	Prep Date: 11/2	7/2013	DF: 10			
Analyte	Result	PQL	SPK V al	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Acenaphthene	95.69	64	127.6	0	7 5	35-110	117.3	20.3	40			
Acenaphthylene	114.8	64	127.6	76.6	30	35-115	189.1	48.9	40	SR		
Anthracene	108.4	64	127.6	19.98	69.3	45-125	143.4	27.8	40			
Benzo(a)anthracene	140.3	64	127.6	226.5	-67.5	50-105	365.1	88.9	40	SR		
Benzo(a)pyrene	153.1	64	127.6	273.1	-94	40-135	404.2	90.1	40	SR		
Benzo(b)fluoranthene	159.5	64	127.6	496.2	-264	55-120	482.4	101	40	SR		
Benzo(b-k)fluoranthene	287.1	130	255.2	496.2	-82	55-120	749.7	89.2	40	SR		
Benzo(g,h,i)perylene	146.7	64	127.6	246.4	-78.2	55-115	391.2	90.9	40	SR		
Benzo(k)fluoranthene	127.6	64	127.6	143.2	-12.2	55-120	267.3	70.8	40	SR		
Chrysene	140.3	64	127.6	216.5	-59.7	55-120	358.6	87.5	40	SR		
Dibenzo(a,h)anthracen	e 121.2	64	127.6	53.28	53.2	45-115	189.1	43.7	40	R		
Fluoranthene	146.7	64	127.6	286.4	-109	40-135	502	110	40	SR		
Fluorene	108.4	64	127.6	3.33	82.4	45-105	117.3	7.88	40			
Indeno(1,2.3-cd)pyrene	140.3	64	127.6	186.5	-36.2	55-135	312.9	76.2	40	SR		
Naphthalene	102.1	64	127.6	3.33	77.4	50-110	97.79	4.28	40			
Phenanthrene	102.1	64	127.6	36.63	51. 3	55-12 5	189.1	59.8	40	SR		
Ругепе	153.1	64	127.6	369.7	-170	50-115	573.7	116	40	SR		
Surr: 2-Fluorobiphen	y! 261.5	0	319	0	82	12-100	208.6	22.5	4 0			
Surr: 4-Terphenyl-d1	4 287.1	0	319	0	90	25-137	332.5	14.7	4 0			
Surr: Nitrobenzene-o	5 223.3	0	319	0	70	37-107	208.6	6.79	40			
The following sample:	s were analyzed in this batch:	13	111254-011	3 1311	1254-02B	13	111254-03B					

The following samples were analyzed in this batch:

13111254-01B	13111254-02B	13111254-03B	
13111254-04B	13111254-05B	13111254-06B	:
13111254-07B	13111254-08B	13111254-09B	
13111254-10B	13111254-11B	13111254-12B	

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53708	Instrument ID SVMS7		Method	: SW827	OM						
MBLK S	ample ID: SBLKW1-53708-5370)8			Units; µg/L			Analysis Date: 11/27/2013 08:06 PM			
Client ID:	Run II	D: SVMS7	SVMS7_131127A		SeqNo:2561249		Prep Date: 11/27/2013		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%	REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	ND	0.060									
Acenaphthylene	ND	0.080		J-#/							
Anthracene	ND	0.060									
Benzo(a)anthracene	ND	0.040							•		
Benzo(a)pyrene	ND	0.080									
Benzo(b)fluoranthene	ND	0.090									
Benzo(b-k)fluoranthene	ND	0.11									
Benzo(g,h,i)perylene	ND	0.080									
Benzo(k)fluoranthene	ND	0.050									
Chrysene	ND	0.050									
Dibenzo(a,h)anthracene	. ND	0.080									
Fluoranthene	. ND	0.070								•	
Fluorene	ND	0.050									
Indeno(1,2,3-cd)pyrene	ND	0.070									
Naphthalene	ND	0.070									
Phenanthrene	ND	0.080									
Pyrene	ND	0.050									
Surr: 2-Fluorobiphen	2.44	O	5		0	48.8	10-112		0		
Surr: 4-Terphenyl-d1	4 3.97	0	5		0	79.4	10-132		0		
Surr: Nitrobenzene-d	5 2.55	0	5		0	51	15-110		0		

Triad Engineering, Inc.

Work Order:

Batch ID: 53708

13111254

Project:

LCS

Client ID:

Analyte

Acenaphthene

Anthracene

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Acenaphthylene

Benzo(a)pyrene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Surr: 2-Fluorobiphenyl

Surr: 4-Terphenyl-d14

Surr: Nitrobenzene-d5

Benzo(b-k)fluoranthene

Johns Manville-Riverside Parcels

instrument ID SVMS7

Sample ID: SLCSW1-53708-53708

Result

1.45

1.17

1.35

1.38

1.4

1.46

2.93

1.67

1.47

1.52

1.46

1.38

1.52

1.45

1.09

1.25

1.61

2.47

4.03

2.73

Method: SW8270M

SPK Ref

Value

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Run ID: SVMS7_131127A

PQL

0.060

0.080

0.060

0.040

0.080

0.090

0.11

0.080

0.050

0.050

0.080

0.070

0.050

0.070

0.070

0.080

0.050

0

0

0

SPK Val

2

2

2

2

2

4

2

2

2

2

2

2

2

2

2

2

5

5

5

Units: µg/L

SeqNo:2561245

%REC

72.5

58.5

67.5

69

70

73

73,2

83.5

73.5

76

73

69

76

72.5

54.5

62.5

80.5

49.4

80.6

54.6

55-110

40-125

55-115

50-110

45-125

40-100

50-115

50-130

10-112

10-132

15-110

Analysis Date: 11/27/2013 12:57 PM Prep Date: 11/27/2013 DF: 1 Control RPD Ref RPD Value Limit Limit %RPD Qual 0 45-110 50-105 0 55-110 0 0 55-110 55-110 0 45-120 0 0 45-120 0 40-125 45-120 0

0

0

0

0

0

0

0

0

0

0

Ċ

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53708	Instrument ID SVMS7		Method:	\$W827	ОМ						
ms s	ample ID: 13111249-07B MS				ι	Jnits:µg/L	-	Analy	sis Date: 1	1/27/2013	02:03 PM
Client ID:	Run	ID: SVMS7	D: SVMS7_131127A		SeqNo: 2561246		1246	Prep Date: 11/27/2013		DF:1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	1.37	0.060	2		0	68.5	45-110	()		
Acenaphthylene	1.22	0.080	2		0	61	50-105	()		
Anthracene	1.32	0.060	2		0	66	5 5-110	(
Benzo(a)anthracene	1.36	0.040	2		D	68	55-110	()		
Вепzо(а)ругепе	1.44	0.080	2		0	7 2	55-110	()		
Benzo(b)fluoranthene	1,51	0.090	2		0	75. 5	45-120	()		
Benzo(b-k)fluoranthene	2.93	0.11	4		0	73.2	45-1 2 0	()		
Benzo(g,h,i)perylene	1.71	0.080	2		0	85.5	40-125	()		
Benzo(k)fluoranthene	1.42	0,050	2		0	71	45-120	()		
Chrysene	1.44	0.050	2		0	72	55-110	()		
Dibenzo(a,h)anthracene	1.47	0.080	2		0	73. 5	40-125	()		
Fluoranthene	1.4	0.070	2		0	70	5 5-115	()		
Fluorene	1.5	0.050	2		0	75	50-110)		
Indeno(1,2,3-cd)pyrene	1.48	0.070	2		0	74	45-125				
Naphthalene	1.15	0.070	2		D	57 <i>.</i> 5	40-100	()		
Phenanthrene	1.23	0.080	2		0	61.5	50-11 0	()		
Pyrene	1.6	0.050	2		0	80	50-130)		
Surr: 2-Fluorobipheny	vi 2.6	0	5		0	5 2	10-112	()		
Surr: 4-Terphenyl-d1-	3.99	0	5		0	79.8	10-132	1)		
Surr: Nitrobenzene-d	5 2.79	0	5		0	55.8	15-110)		

QC BATCH REPORT

Client:

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53708	Instrument ID SVMS7		Metho	: SW827	OM				-10-11		
MSD S	Sample ID: 13111249-07B MSD	A.		•11	Units: µg/L			Analysis Date: 11/27/2013 02:36 PM			
Client ID:	Run IE	ID: SVMS7 131127A			SeqNo:2561247			Prep Date: 11/2	7/2013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	1.28	0.060	2		0	64	45-110	1.37	6.79	40	
Acenaphthylene	1.09	0.080	2		0	54.5	50-105	1.22	11.3	40	
Anthracene	1.25	0.060	2		0	62.5	55-110	1.32	5.45	40	
Benzo(a)anthracene	1.24	0.040	2		0	62	55-110	1.36	9.23	4 0	
Benzo(a)pyrene	1.29	0.080	2		0	64.5	55-110	1.44	11	40	
Benzo(b)fluoranthene	1.36	0.090	2	, , , , , , , , , , , , , , , , , , ,	0	68	45-120	1.51	10.5	40	
Benzo(b-k)fluoranthene	e 2.63	0.11	4		0	65.8	45-120	2.93	10.8	40	
Benzo(g,h,i)perylene	1.5	0.080	2		0	7 5	40-125	1.71	13.1	40	
Benzo(k)fluoranthene	1.27	0.050	2		0	63.5	45-120	1.42	11.2	40	
Chrysene	1.31	0.050	2		0	65.5	55-110	1.44	9.45	40	
Dibenzo(a,h)anthracen	ne 1.32	0.080	2		0	66	40-125	1.47	10.8	40	
Fluoranthene	1.27	0.070	2		0	63.5	55-115	1.4	9.74	40	
Fluorene	1.44	0.050	2		0	72	50-110	1.5	4.08	40	
Indeno(1,2,3-cd)pyrene	1.32	0.070	2		0	66	45-125	1.48	11.4	40	
Naphthalene	1.04	0.070	2		0	52	40-100	1.15	10	4 0	
Phenanthrene	1.16	0.080	2		0	58	50-115	1,23	5.86	40	
Pyrene	1.39	0.050	2		0	69.5	50-130	1.6	14	40	
Surr: 2-Fluorobiphei	nv/ 2.35	0	5		0	47	10-112	2.6	10.1	.40	
Surr: 4-Terphenvl-d	, a 45	0	5		0	69.4	10-132	3.99	13.9	40	
Surr: Nitrobenzene-		0	5	•,	0	50	15-110	2.79	11	40	

The following samples were analyzed in this batch:

13111254-28B 13111254-29B

Triad Engineering, Inc.

Work Order:

Surr: 4-Terphenyl-d14

Surr: Nitrobenzene-d5

13111254

Project:	Johns Manville-Riverside l	Parcels									
Batch ID: 53753	Instrument ID SVMS7		Metho	d: SW827	0M				-		A75-271
LCS	Sample ID: SLCSS1-53753-5	3753	.		l	Jnits: µg/k	(g	Analy	sis Date: 1	2/2/2013 0)4:52 PM
Client ID:	R	un ID: SVMS	7_131202A		Se	qNo:2562	2223	Prep Date: 12/	2/2013	DF: 1	
Analyte	Reso	uit PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	43.3	33 3,3	66.67		0	65	35-110	(ס		
Acenaphthylene	47.6	3.3	66.67		0	71.5	35-115	()		
Anthracene	ŧ	53 3.3	66.67		0	79.5	45-12 5	()		
Benzo(a)anthracene		55 3.3	66.67		0	82.5	50-105	()		
Benzo(a)pyrene	60.3	3.3	66,67		0	90.5	40-135	t)		
Benzo(b)fluoranthene	65.3	3.3	66.67		0	98	55-120	t)		
Benzo(b-k)fluoranthe	ne 12	21 6.7	133.3		0	90.8	55-120	(
Benzo(g,h,i)perylene	60.6	3.3	66.67		0	91	55-115	(0		
Benzo(k)fluoranthene	55.6	3.3	66.67		0	83.5	55-120	()		
Chrysene	59.6	3.3	66.67		0	89.5	55-120	(0		
Dibenzo(a,h)anthrace	ene 62.3	3.3	66.67		0	93.5	45-115	(כ		
Fluoranthene	55.6	3.3	66.67		0	83.5	40-135	()		
Fluorene	4	48 3.3	66.67		0	72	45-105	(0		,
Indeno(1,2,3-cd)pyre	ne 6	3.3	66.67		0	93	55-135	()		
Naphthalene	51.6	3.3	66.67		0	77.5	50-110	(0		
Phenanthrene	52.3	33 3,3	66.67		0	78.5	55-125	(9		
Pyrene	(51 3.3	66.67		0	91,5	50-115	()		
Surr: 2-Fluorobiph	enyl 125	.7 0	1 66 .7		0	75. <i>4</i>	12-10 0	(0		

170

138

0

166.7

166.7

0

102

82.8

25-137

37-107

QC BATCH REPORT

0

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53753	Instrument ID SVMS7		Metho	d: SW8270M							
MS S	iampie ID: 13111254-13B MS			,	Jnits: µg/k	 (g	Analys	Analysis Date: 12/3/2013 09:45 AM			
Client ID: SS-15	Run	D: SVMS7_131203A		SeqNo:2563776			Prep Date: 12/2	2/2013	DF: 10		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Acenaphthene	86.25	66	132.7	6.492	60.1	35-110	0				
Acenaphthylene	132.7	66	132.7	19.48	85.3	35-115	0				
Anthracene	132.7	66	132.7	19.48	85.3	45-125	0				
Benzo(a)anthracene	437.9	66	132.7	1 7 5.3	198	50-105	0			s	
Benzo(a)pyrene	325.1	66	132,7	120.1	154	40-135	0			s	
Benzo(b)fluoranthene	384.8	66	132.7	233.7	114	55-120	0				
Benzo(b-k)fluoranthene	643.6	130	265.4	233.7	154	55-120	0			S	
Benzo(g,h,i)perylene	258.8	66	132.7	74.66	139	55-115	0			s	
Benzo(k)fluoranthene	258.8	66	132.7	81.16	134	55-120	0			S	
Chrysene	265.4	66	132.7	90.89	132	55-120	0			S	
Dibenzo(a.h)anthracene	159.2	66	132.7	19.48	105	45-115	0				
Fluoranthene	418	66	132.7	181.8	178	40-135	0			s	
Fluorene	72.98	66	132.7	6.492	50.1	45-105	0				
Indeno(1,2,3-cd)pyrene	245.5	66	132.7	74.66	129	55-135	0				
Naphthalene	119.4	66	132.7	12.98	80.2	50-110	0				
Phenanthrene	232.2	66	132.7	68.17	124	55-125	0				
Pyrene	364.9	66	132.7	146.1	165	50-115	0			s	
Surr: 2-Fluorobiphen	yl 265.4	0	331.7	0	80	12-100	0				
Surr: 4-Terphenyl-d1	4 318.5	0	331.7	0	96	25-137	0				
Surr: Nitrobenzene-d	5 212.3	0	331.7	0	64	37-107	0				

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

QC	BAT	CH	REP	ORT

Batch ID: 53753	Instrument ID SVMS7		Method	: SW8270N						
MSD	Sample ID: 13111254-13B MSD				Units: µg/k	(g	Analys	is Date: 12	/3/2013 1	0:18 AM
Client ID: SS-15	Run (C): SVMS7	_131203A	S	eqNo:2 56 3	3777	Prep Date: 12/2	/2013	DF: 10	
Analyte	Result	PQL	SPK V ai	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Acenaphthene	92.37	66	132	6.492	65.1	35-110	86.25	6.85	40	
Acenaphthylene	138.6	66	132	19.48	90.2	35-115	132.7	4.32	40	
Anthracene	151.8	66	132	19.48	100	45-125	132.7	13.4	40	
Benzo(a)anthracene	521.2	66	132	175.3	262	50-105	437.9	17.4	40	s
Benzo(a)pyrene	382.7	66	132	120.1	19 9	40-135	325.1	16.3	40	s
Benzo(b)fluoranthene	448.7	66	132	233.7	163	55-120	384.8	15.3	40	s
Benzo(b-k)fluoranthe	ne 732.4	130	263.9	233.7	189	55-120	643.6	12.9	40	S
Benzo(g,h,i)perylene	283.7	66	13 2	74.66	158	55-115	258.8	9.2	40	\$
Benzo(k)fluoranthene	283.7	66	132	81.16	154	55-120	258.8	9.2	40	S
Chrysene	296.9	66	132	90.89	156	55-120	265.4	11.2	40	s
Dibenzo(a,h)anthrace	ene 151.8	66	132	19.48	100	45-115	159.2	4.81	40	
Fluoranthene	547.6	66	132	181.8	277	40-135	418	26.9	40	s
Fluorene	79.18	66	132	6.492	55.1	45-105	72.98	8.14	40	
Indeno(1,2,3-cd)pyrei	ne 277.1	66	132	74.66	153	55-135	245.5	12.1	40	S
Naphthalene	112.2	66	132	12.98	75.2	50-110	119.4	6.27	40	
Phenanthrene	277.1	6€	13 2	68.17	158	55-125	232.2	17.6	40	s
Pyrene	461.9	66	132	146.1	239	50-115	364.9	23.5	40	S
Surr: 2-Fluorobiphe	enyl 230.9	0	329.9	0	70	12-100	26 5.4	13.9	40	
Surr: 4-Terphenyl-	d14 303.5	0	329 .9	0	92	25-137	318.5	4.81	40	
Surr: Nitrobenzene	-d5 191.3	0	329.9	0	58	37-107	212. 3	10.4	40	
The following sample	les were analyzed in this batch:		111254-13B 111254-16B		1254-14B 1254-17B		111254-15B 111254-18B			

13111254-13B	13111254-14B	13111254-15B	-
13111254-16B	13111254-17B	13111254-18B	
13111254-19B	13111254-20B	13111254-21B	
13111254-22B	13111254-23B	13111254-24B	
13111254-25B	13111254-26B	13111254-27B	i

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

	strument ID VMS5			d: SW826						
MBLK Sample	ID: MBLK-53716-53716				Units: µg/F	(g	Analy	/sis Date: 1	1/27/2013	04:23 PN
Client ID:	Run ID	: VMS5_	131127A		SeqNo:2559	9191	Prep Date: 11	/19/2013	DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1-Trichloroethane	ND	30								
1,1,2,2-Tetrachloroethane	ND	30			·					
1,1.2-Trichloroethane	ND	30								
1,1-Dichloroethane	ND	30								
1,1-Dichloroethene	ND	30								
1,2-Dichloroethane	ND	30								
1,2-Dichloropropane	ND	30								
2-Butanone	ND	200								
2-Hexanone	ND	30								
4-Methyl-2-pentanone	ND	30								
Acetone	ND	100								
Benzene	ND	30		•						
Bromodichloromethane	ND	30								
Bromoform	ND	30								
Bromomethane	ND	75								
Carbon disulfide	ND ND	30								
	. ND	30								
Carbon tetrachloride	ND ND		Company of the second							
Chlorobenzene	ND ND	30								
Chloroetnane		100								
Chloroform	ND ND	30								
Chloromethane	ND ND	100								
cis-1,2-Dichloroethene	ND NB	30								
cis-1,3-Dichloropropene	ND	30							· · · · · · · · · · · · · · · · · · ·	
Dibromochloromethane	ND	30								
Ethylbenzene	ND	30								
m,p-Xylene	ND	60								
Methylene chloride	ND	30								
o-Xylene	ND	30								
Styrene	ND	30								
Tetrachloroethene	ND	30								
Toluene	ND	30								
trans-1,2-Dichloroethene	ND	30								
trans-1,3-Dichloropropene	ND	30								
Trichloroethene	ND	30								
Vinyl chloride	ND	30		· -						
1,2-Dichloroethene, Total	ND	60								
1,3-Dichloropropene, Total	ND	60								
Xylenes, Total	ND	90								
Surr: 1,2-Dichloroethane-d4	984.5	0	1000		0 98.4	70-130		0		
Surr: 4-Bromofluorobenzene	973	0	1000		0 97.3	70-130		0		
Surr: Dibromofluoromethane	e 994.5	0	1000		0 99.4	70-130		0		
Surr: Toluene-d8	992	0	1000		0 99.2	70-130		0		

Triad Engineering, Inc.

Work Order:

Project:

Johns Manville-Riverside Parcels

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

MS Samp	le ID: 13111249-05A MS				l	Jnits: µg/K		Analysis Da	te: 11/30/20	13 08:08 AN
Client ID:		ID: VMS8_	131129B			qNo:2561	-	Prep Date: 11/19/20		
Oliciti ID.	ran	ID. VINGO_	1011230		00	.q140.250				
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value %R	RPD IPD Limit	Qual
1,1,1-Trichloroethane	985.5	30	1000		0	98,6	70-135	O		
1,1,2,2-Tetrachioroethane	905	30	1000		0	90.5	55-130	0		
1,1,2-Trichloroethane	968	30	1000		0	96.8	60-125	0		
1,1-Dichloroethane	964.5	30	1000		0	96.4	75-125	0		
1,1-Dichloroethene	922.5	30	1000		0	92.2	65-135	0		
1,2-Dichloroethane	1014	30	1000		0	101	70-135	0		
1,2-Dichloropropane	934	30	1000		0	93.4	70-120	0		
2-Butanone	827	200	1000		0	82.7	30-160	0		
2-Hexanone	890.5	30	1000		0	89	45-145	0		
4-Methyl-2-pentanone	1235	30	1000		0	124	45-145	0		
Acetone	995.5	100	1000		0	99.6	20-160	0		
Benzene	923.5	30	1000		0	92.4	75-125	0		
Bromodichłoromethane	973	30	1000		0	97.3	70-130	0		
Bromoform	824.5	30	1000		0	82.4	55-135	0		
Bromomethane	966	75	1000		0	96.6	30-160	0		
Carbon disulfide	1018	30	1000		0	102	45-160	0		
Carbon tetrachloride	940	30	1000		0	94	65-135	0		
Chlorobenzene	977	30	1000		0	97.7	75-125	0		
Chloroethane	890.5	100	1000		0	89	40-155	0		
Chloroform	1014	30	1000		0	101	70-125	0		
Chloromethane	789	100	1000		0	78.9	50-130	0		
cis-1,2-Dichloroethene	930.5	30	1000		0	93	65-125	0		
cis-1,3-Dichloropropene	921	30	1000		0	92,1	70-125	0		
Dibromochloromethane	944.5	30	1000		0	94.4	65-135	0		
Ethylbenzene	967	30	1000		0	96.7	75-125	0		
m,p-Xylene	1944	60	2000		0	97.2	80-125	0		
Methylene chloride	921.5	30	1000		0	92.2	55-145	0		
o-Xylene	1026	30	1000		0	103	75-125	0		
Styrene	1000	30	1000		0	100	75-125	0		
Tetrachloroethene	999.5	30	1000		0	100	64-140	0		
Toluene	976	30	1000		0	97.6	70-125	0		
trans-1,2-Dichloroethene	1008	30	1000		0	101	65-135	0		
trans-1,3-Dichloropropene	929	30	1000		0	92.9	65-125	0		
Trichloroethene	931	30	1000		0	93.1	75-125	0		
Vinyl chioride	718	30	1000		0	71.8	60-125	0		
Xylenes, Total	2970	90	3000	-	0	99	75-125	0		
Surr: 1,2-Dichloroethane-		0	1000		0	104	70-130	0		
Surr: 4-Bromofluorobenze		0	1000		0	101	70-130	0		
Surr: Dibromofluorometha		0	1000		0	102	70-130	0		
Surr: Toluene-d8	1002	0	1000		0	100	70-130	0		

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53716 Instrument ID VMS5 Method: SW8260B MSD Sample ID: 13111249-05A MSD Units: µg/Kg Analysis Date: 11/30/2013 08:33 AM Client ID: Run ID: VMS8_131129B SeqNo:2561412 Prep Date: 11/19/2013 DF: 1 RPD SPK Ref Control RPD Ref Value Value Limit Limit SPK Val %REC Analyte Result PQL %RPD Qual 956.5 985.5 1,1,1-Trichtoroethane 30 1000 0 95.6 70-135 2.99 30 884.5 55-130 30 1000 0 88.4 905 2,29 1.1.2.2-Tetrachioroethane 30 1,1.2-Trichloroethane 912 30 1000 0 91.2 60-125 968 5.96 30 1,1-Dichioroethane 946 30 1000 0 94.6 75-125 964.5 1.94 30 931 1,1-Dichloroethene 30 1000 0 93.1 65-135 922.5 0.917 30 960 30 1000 0 96 70-135 1014 1,2-Dichloroethane 5.42 30 898.5 1,2-Dichloropropane 30 1000 0 8,8 70-120 934 3.87 30 802 2-Butanone 200 1000 0 80.2 30-160 827 3.07 30 857 30 0 890.5 1000 85.7 45-145 3.83 30 2-Hexanone 1179 30 0 4-Methyl-2-pentanone 1000 118 45-145 1235 4.64 30 1033 100 1000 0 20-160 995.5 Acetone 103 3.7 30 910.5 30 0 75-125 923.5 1.42 Benzene 1000 91 30 945 30 0 Bromodichloromethane 1000 70-130 973 2.92 94.5 30 770.5 Bromoform 30 1000 0 77 55-135 824.5 6.77 941 Bromomethane 75 1000 0 94.1 30-160 966 2.62 30 996.5 0 30 1018 Carbon disulfide 1000 99.6 45-160 2.13 30 905.5 Carbon tetrachioride 30 1000 0 90.6 65-135 940 3.74 30 953 30 1000 0 977 Chlorobenzene 95,3 75-125 2.49 30 804.5 Chloroethane 100 1000 D 80.4 40-155 890.5 10.1 30 Chloroform 1010 30 1014 1000 Ω 101 70-125 0.346 30 Chloromethane 790.5 100 1000 0 79 50-130 789 0.19 30 cis-1,2-Dichloroethene 940.5 30 1000 0 94 65-125 930.5 1.07 30 cis-1.3-Dichloropropene 903.5 30 1000 0 90.4 70-125 921 1.92 30 910.5 30 1000 0 91 65-135 944.5 3,67 Dibromochloromethane 30 Ethylbenzene 936.5 30 1000 0 93.6 75-125 967 3.2 30 1926 m,p-Xylene 60 2000 0 96.3 80-125 1944 0.956 30 931.5 30 0 1000 93.2 55-145 921.5 1.08 Methylene chłoride 30 989 0 o-Xylene 30 1000 98.9 75-125 1026 3.62 30 989.5 30 Styrene 1000 0 99 75-125 1000 1.11 30 941 0 Tetrachioroethene 30 1000 64-140 999.5 6.03 30 94.1 935 30 0 Toluene 1000 93.5 70-125 976 4.29 30 968 trans-1,2-Dichloroethene 30 1000 0 96.8 65-135 1008 4 30 902 trans-1,3-Dichloropropene 30 1000 0 90.2 65-125 929 2.95 30 888 30 Trichloroethene 30 0 1000 88.8 75-125 931 4.73 727.5 Vinyl chloride 30 1000 0 72.8 60-125 718 1.31 30 2914 90 3000 0 75-125 2970 Xylenes, Total 30 999 Surr: 1,2-Dichloroethane-d4 0 1000 0 99.9 70-130 1039 3.93 30 1018 0 Surr: 4-Bromofluorobenzene 0 1000 102 70-130 1008 0.888 30 988.5 Surr: Dibromofluoromethane 0 1000 0 98.8 70-130 1023 3.43 30 Surr: Toluene-d8 1009 0 1000 0 101 70-130 1002 0.696 30

Triad Engineering, Inc.

Work Order:

13111254

Proje

Project:	Johns Manville-Riverside Parcel	S			
Batch ID: 5371 6	Instrument ID VMS5	Method:	SW8260B		
The following san	nples were analyzed in this batch:	13111254-01A	13111254-02A	13111254-03A	
		13111254-04A	13111254-05A	13111254-06A	ĺ
		13111254-07A	13111254-08A	13111254-09A	
		13111254-10A	13111254-11A	13111254-12A	
		13111254-13A	13111254-14A	13111254-15A	

Triad Engineering, Inc.

QC BATCH REPORT Work Order: 13111254 Project: Johns Manville-Riverside Parcels Batch ID: 53717 Instrument ID VMS5 Method: SW8260B MBLK Sample ID: MBLK-53717-53717 Units: µg/Kg Analysis Date: 11/27/2013 04:47 PM Client ID: Run ID: VMS5_131127A SeqNo:2559192 Prep Date: 11/19/2013 DF: 1 RPD SPK Ref Control RPD Ref Value Value Limit Limit Result PQL SPK Val %REC %RPD Qual Analyte ND 1,1,1-Trichloroethane 30 ND 30 1,1,2,2-Tetrachioroethane 1,1,2-Trichloroethane ND 30 ND 30 1,1-Dichloroethane ND 1.1-Dichloroethene 30 ND 1,2-Dichloroethane 30 ND 30 1,2-Dichloropropane ND 2-Butanone 200 ND 2-Hexanone 30 4-Methyl-2-pentanone ND ND Acetone 100 ND Benzene 30 ND Bromodichloromethane 30 ND 30 Bromoform ND 75 Bromomethane NΩ Carbon disulfide 30 Carbon tetrachloride ND 30 ND Chlorobenzene 30 ND Chloroethane 100 Chloroform ND 30 Chloromethane ND 100 ND 30 cis-1,2-Dichloroethene ND 30 cis-1,3-Dichloropropene Dibromochloromethane ND 30 Ethylbenzene ND 30 ND 60 m,p-Xylene ND Methylene chloride 30 o-Xylene ND 30 Styrene ND 30 ND Tetrachloroethene 30 Toluene ND 30 trans-1,2-Dichloroethene ND 30 ND 30 trans-1,3-Dichloropropene ND 30 Trichloroethene Vinyl chloride ND 30 ND 60 1,2-Dichloroethene, Total ND 60 1,3-Dichloropropene, Total ND Xylenes, Total 90

Surr: 1.2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

993

970

993

988.5

0

0

0

0

1000

1000

1000

1000

0

0

0

0

99.3

97

98.8

99.3

70-130

70-130

70-130

70-130

0

0

0

0

Client: Triad Engineering, Inc.

Work Order: 13111254

Project: Johns Manville-Riverside Parcels

Detail De FORMY Instrument ID WHOE

Batch ID: 53717	Instrument ID VM\$5		Metho	d: SW826	60B						
LCS Sam	ole ID: LCS-53717-53717				(Jnits:μg/K	g	Analysis D	ate: 1	1/27/2013	03:10 PM
Client ID:	Run ID	: VMS5_	131127A		Se	eqNo: 255 9	1190	Prep Date: 11/19/2	013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value %	RPD	RPD Limit	Qual
1,1,1-Trichloroethane	1072	30	1000		0	107	70-135	О			
1,1,2,2-Tetrachioroethane	1141	30	1000		0	114	55-130	0			
1,1,2-Trichloroethane	1134	30	1000		0	113	60-125	0			
1.1-Dichloroethane	1050	30	1000		0	105	75-125	0			
1,1-Dichloroethene	1062	30	1000		0	106	65-135	0			
1,2-Dichloroethane	1049	30	1000		0	105	70-135	0			
1,2-Dichloropropane	1082	30	1000		0	108	70-120	0			
2-Butanone	1094	200	1000		0	109	30-160	0			
2-Hexanone	1108	30	1000		0	111	45-145	0			
4-Methyl-2-pentanone	1419	30	1000		0	142	45-145	0			
Acetone	1115	100	1000		0	112	20-160	0			
Benzene	1072	30	1000		D	107	75-125	0			
Bromodichloromethane	1078	30	1000		0	108	70-130	0			
Bromoform	1053	30	1000		0	105	55-135	0			
Bromomethane	775.5	75	1000		0	77.6	30-160	О			
Carbon disulfide	1041	30	1000		0	104	45-160	0			
Carbon tetrachloride	951	30	1000		0	95.1	65-135	0			
Chlorobenzene	1084	30	1000		0	108	75-125	0			
Chloroethane	1013	100	1000		0	101	40-155	0			
Chloroform	1064	30	1000	, ,	0	106	70-125	0			
Chloromethane	856.5	100	1000		0	85.6	50-130	0			
cis-1,2-Dichloroethene	1070	30	1000		0	107	65-125	0			
cis-1,3-Dichloropropene	1163	30	1000		0	116	70-12 5	0			
Dibromochloromethane	959.5	30	1000		0	96	65-135	0			
Ethylbenzene	1115	30	1000		0	112	75-125	0			
m,p-Xylene	2136	60	2000		0	107	80-125	0			
Methylene chłoride	1059	30	1000		0	106	5 5-145	0			
o-Xylene	1129	30	1000		0	113	75-125	0			
Styrene	1160	30	1000		0	116	75-125	0			
Tetrachloroethene	1120	30	1000		0	112	64-140	0			
Toluene	1086	30	1000		0	109	70-125	0			
trans-1,2-Dichloroethene	1076	30	1000		0	108	65-135	D			
trans-1,3-Dichloropropene	1054	30	1000		0	105	65-125	0			
Trichloroethene	1094	30	1000		0	109	75-125	0			
Vinyl chloride	780.5	30	1000		0	78	60-125	0			
Xylenes, Total	3264	90	3000		0	109	75-125	0			
Surr: 1,2-Dichloroethane	-d4 979.5	0	1000		0	98	70-130	0			
Surr: 4-Bromofluorobenza	ene 1003	0	1000		0	100	70-130	0			
Surr: Dibromofluorometh	ane 996	0	1000		0	99.6	70-130	0			
Surr: Toluene-d8	1014	0	1000		0	101	70-130	0			

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53717	Instrument ID VMS5		Metho	d: SW826	0B						
MS Sa	mple ID: 13111249-06A MS				ι	Jnits:µg/K	ζg	Analys	is Date: 1	1/28/2013	12:51 PN
Client ID:	Run II): VMS8_	1311 27 B		Se	qNo: 255 9	9187	Prep Date: 11/1	9/2013	DF: 1	
Analyte	Result	PQL	SPK V al	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
•	967.5	20	4000		_	00.0	70.405				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		30	1000		0	96.8 88.4	70-135 55-130	0			
1,1,2-Trichloroethane	e 005.5 975.5	30	1000		0	97,6	60-125	0			
1,1-Dichloroethane	980.5	30	1000			• 98	75-125	0			
1,1-Dichloroethene	993	30	1000		0	99.3	65-135	0			
1,2-Dichloroethane	1048	30	1000		0	105	70-135	0			
1,2-Dichloropropane	955.5	30	1000		0	95.6	70-133	0			
2-Butanone	934	200	1000		0	93.4	30-160	0			
2-Hexanone	1019	30	1000		0	102	45-145	0			
	1450	30	1000		0	145	45-145	0			s
4-Methyl-2-pentanone	1112	100	1000		0			0			3
Acetone Benzene	946.5	30	1000		0	94.6	20-160 75-125	0			
Bromodichloromethane	948.5	30	1000		0	94.8	70-120	0			
Bromoform	799	30	1000		0	79.9	55-135				
	799.5	30 75	1000		0	79.9 80					
Bromomethane	1049				0		30-160	0			
Carbon disulfide	947	30 30	1000		0	105	45-160	0			
Carbon tetrachloride	973.5		1000			94.7	65-135				
Chlorobenzene	851	30 10 0	1000		0	97.4	75-125	0			
Chloroethane	989.5		1000		0	85.1	40-155	0			
Chloroform	811	30	1000			99	70-125	0			
Chloromethane	977	100	1000		0	81.1	50-130	0	******		
cis-1,2-Dichloroethene	942.5	30 30	1000		0	97.7	65-125	0			
cis-1,3-Dichloropropene	930		1000	· · · · · · · · · · · · · · · · · · ·	0	94.2	70-125	0			
Dibromochloromethane	982	30	1000		0	93	65-135	0			
Ethylbenzene	1950	30	1000		0	98.2	75-125	0			
m,p-Xylene	996.5	60	2000		0	97.5	80-125	-			
Methylene chloride	1012	30	1000		0	99.6	55-145	0			
o-Xylene	992.5	30	1000		0	101	75-125	0			
Styrene	1000	30	1000		0	99.2	75-125	0			
Tetrachloroethene		30	1000		0	100	64-140	0			
Toluene	977	30	1000		0	97.7	70-125	0			
trans-1,2-Dichloroethene		30	1000		0	103	65-135	0			
trans-1,3-Dichloropropen-		30	1000		0	96.2	65-125	0			
Trichloroethene	944.5	30	1000		0	94.4	75-125	0			
Vinyl chloride	753.5	30	1000		0	75.4	60-125	. 0			
Xylenes, Total	2962	90	3000		0	98.7	75-125	0			
Surr: 1,2-Dichloroethai		0	1000		0	105	70-130	0			
Surr: 4-Bromofluorobei		0	1000		0	99	70-130	0			
Surr: Dibromofluorome Surr: Toluene-d8	thane 987.5 1026	0	1000		0	98.8	70-130 70-130	0			

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

MSD Samp	ie ID: 13111249-06A MSD				Ų	Jnits:µg/K	(g	Analysi	s Date: 11	/28/2013	01:16 PM
Client ID:	Run IE	. VMS8_	131127B		Se	qNo:2559	188	Prep Date: 11/1	9/2013	DF:1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	971	30	1000		0	97.1	70-135	967.5	0.361	30	
1,1,2,2-Tetrachloroethane	994	30	1000		0	99.4	55-130	883.5	11.8	30	
1,1,2-Trichloroethane	993.5	30	1000		0	99.4	60-125	975.5	1.83	30	
1,1-Dichloroethane	974	30	1000		0	97.4	75-125	980.5	0.665	30	
1,1-Dichloroethene	1005	30	1000		0	100	65-135	993	1.2	30	
1,2-Dichloroethane	1034	30	1000		0	103	70-135	1048	1.25	30	
1,2-Dichloropropane	945	30	1000		0	94.5	70-120	955.5	1.1	30	
2-Butanone	980.5	200	1000		0	98	30-160	934	4.86	30	
2-Hexanone	1103	30	1000		0	110	4 5-145	1019	7.92	30	
4-Methyl-2-pentanone	1538	30	1000		0	154	45-145	1450	5.89	30	s
Acetone	12 24	100	1000		0	122	20-160	1112	9.58	30	_
Benzene	949.5	30	1000		0	95	75-125	946.5	0.316	30	
Bromodichloromethane	944	30	1000		0	94.4	70-130	948.5	0.476	30	
Bromoform	868	30	1000		0	86.8	55-135	799	8.28	30	
Bromomethane	772	7 5	1000		0	77.2	30-160	799.5	3.5	30	
Carbon disulfide	929	30	1000		0	92.9	45-160	1049	12.1	30	
Carbon tetrachloride	925	30	1000		0	92.5	65-135	947	2.35	30	
Chlorobenzene	991	30	1000		0	99.1	75-125	973.5	1.78	30	
Chioroethane	696	100	1000		0	69.6	40-155	851	20	30	
Chloroform	980.5	30	1000		0	98	70-125	989.5	0.914	30	•
Chioromethane	828.5	100	1000		0	82.8	50-130	811	2.13	30	
cis-1,2-Dichloroethene	971	30	1000		0	97.1	65-125	977	0.616	30	
cis-1,3-Dichloropropene	925	30	1000		0	92.5	70-125	942.5	1.87	30	
Dibromochloromethane	960.5	30	1000		0	96	65-135	930	3.23	30	***
Ethylbenzene	993.5	30	1000		0	99.4	75-125	982	1.16	30	
m,p-Xylene	1994	60	2000		0	99.7	80-125	1950	2.23	30	
Methylene chłoride	992,5	30	1000		0	99.2	55-145	996.5	0.402	30	
o-Xylene	1031	30	1000		0	103	75-125	1012	1.86	30	
Styrene	1032	30	1000		0	103	75-125	992.5	3.85	30	
Tetrachloroethene	1017	30	1000		0	102	64-140	1000	1.64	30	
Toluene	965.5	30	1000		0	96.6	70-125	977	1.18	30	
trans-1.2-Dichloroethene	980.5	30	1000		0	98	65-135	1028	4.78	30	
	958	30	1000		0	95.8	65-125	962	0.417	30	
trans-1,3-Dichloropropene	900.5	30									
Trichloroethene Vinyl chloride	726.5	30	1000 1000		0	90 72.6	75-125 60-125	944.5 753.5	4.77 3.65	30 30	
Xylenes, Total	3025	90				72.6 101	60-125	753.5	3.65	30	
•			3000		0		75-125	2962	2.1	30	
Surr: 1,2-Dichloroethane-		0	1000		0	109	70-130	1048	4.07	30	
Surr: 4-Bromofluorobenze		0	1000		0	100	70-130	990.5	0.905	30	
Surr: Dibromofluorometha Surr: Toluene-d8	nne 1032 1034	0	1000		0	103 103	70-130 70-130	987.5 1026	4.41 0.825	30 30	

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: 53717	Instrument ID VMS5	Method: \$	SW8260B	
The following sampl	es were analyzed in this batch:	13111254-16A	13111254-17A	13111254-18A
		13111254-19A	13111254-20A	13111254-21A
		13111254-22A	13111254-23A	13111254-24A
		13111254-25A	13111254-26A	13111254-27A

Triad Engineering, Inc.

QC BATCH REPORT 13111254 Work Order: Johns Manville-Riverside Parcels Project: Batch ID: R131534 Instrument ID VMS8 Method: SW8260 MBLK Sample ID: VBLKW2-131129-R131534 Analysis Date: 11/30/2013 12:03 PM Units: µg/L Client ID: Run ID: VMS8_131129B SeqNo:2561388 Prep Date: DF: 1 RPD RPD Ref SPK Ref Control Value Limit Value Limit SPK Val %REC Qual Result PQL %RPD Analyte ND 1,1,1-Trichloroethane 1.0 1,1,2,2-Tetrachloroethane ND 1.0 ND 1,1,2-Trichloroethane 1.0 ND 1,1-Dichloroethane 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloroethane ND 1.0 1,2-Dichloropropane ND 2.0 2-Butanone ND 5.0 2-Hexanone ND 5.0 4-Methyl-2-pentanone ND 5.0 ND Acetone 20 ND 1.0 Benzene Bromodichloromethane ND 1.0 ND Bromoform 1.0 ND Bromomethane 1.0 ND Carbon disulfide 2.5 ND Carbon tetrachloride 1.0 ND 1.0 Chiorobenzene Chloroethane ND 1.0 ND Chioroform 1.0 ND Chioromethane 1.0 ND cis-1,2-Dichloroethene 1.0 cis-1,3-Dichloropropene ND 1.0 ND 1.0 Dibromochloromethane ND Ethylbenzene 1.0 m,p-Xylene ND 2.0 Methylene chloride ND 5.0 ND 1.0 o-Xylene ND Styrene 1.0 ND 2.0 Tetrachloroethene ND Toluene 1.0 ND 1.0 trans-1,2-Dichloroethene ND trans-1,3-Dichloropropene 1.0 ND 1,0 Trichloroethene ND Vinyl chloride 1.0 ND 2.0 1,2-Dichloroethene, Total ND 1,3-Dichloropropene, Total 2.0 ND Xylenes, Total 3,0 20.6 0 70-120 Surr: 1,2-Dichloroethane-d4 0 103 0 20 19.5

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

19.8

18.45

0

0

0

20

20

20

0

0

0

97.5

92.2

99

75-120

85-115

85-120

0

0

0

Triad Engineering, Inc.

Work Order:

13111254

Johns Manville-Riverside Parcels

Project: Batch ID: R131534 Instrument ID VMS8 Method: SW8260 LCS Sample ID: VLCSW2-131129-R131534 Units: µg/L Analysis Date: 11/29/2013 10:51 PM Prep Date: Client ID: Run ID: VMS8 131129B SeqNo: 2561377 DF: 1 RPD SPK Ref RPD Ref Control Value Limit Value Limit PQL SPK Val %REC %RPD Qual Result Analyte 20.6 1,1,1-Trichloroethane 1.0 20 0 103 65-130 0 1,1,2,2-Tetrachloroethane 20.57 1.0 20 0 103 65-130 0 1,1,2-Trichloroethane 23.47 1.0 20 0 117 75-125 0 20.63 1.0 20 0 0 1,1-Dichloroethane 103 70-135 1,1-Dichloroethene 17.37 20 0 8.68 70-130 0 1.0 1,2-Dichloroethane 21.85 1.0 20 0 109 70-130 0 1,2-Dichloropropane 17.87 20 20 0 89.4 75-125 0 23.11 2-Butanone 5.0 20 0 116 30-150 0 2-Hexanone 23.57 5.0 20 0 118 55-130 0 4-Methyl-2-pentanone 39.97 5.0 20 0 200 60-135 0 S 20.67 20 0 0 Acetone 20 103 40-140 20.04 1.0 20 0 100 80-120 0 Benzene Bromodichioromethane 20.42 1.0 20 0 102 75-120 0 18.66 1.0 20 0 70-130 0 Bromoform 93.3 18.61 0 Bromomethane 1.0 20 93 30-145 0 Carbon disulfide 19.47 20 0 0 2.5 97.4 35-165 Carbon tetrachloride 20.06 20 0 0 1.0 100 65-140 19.64 1.0 20 0 0 Chiorobenzene 98.2 80-120 Chloroethane 18.21 1.0 20 0 91 60-135 0 21.16 Chloroform 1.0 20 0 106 65-135 0 15.42 0 70-125 Chloromethane 20 0 1.0 77.1 20.89 cis-1,2-Dichloroethene 1.0 20 0 104 70-125 0 cis-1,3-Dichloropropene 20.76 20 0 104 0 1.0 70-130 20.36 1.0 20 0 102 60-135 0 Dibromochloromethane 19.35 Ethylbenzene 1.0 20 0 96.8 75-125 0 m,p-Xylene 39.38 2.0 40 0 98.4 75-130 0 Methylene chloride 21.49 5.0 20 0 107 55-140 0 20.33 1.0 20 0 80-120 0 102 o-Xylene 20.73 20 0 0 Styrene 1.0 104 65-135 Tetrachioroethene 21.79 2.0 20 0 45-150 0 109 23.79 Toluene 1.0 **2**0 0 119 75-120 0 21.83 20 0 0 trans-1,2-Dichloroethene 1.0 109 60-140 24.47 trans-1,3-Dichloropropene 1.0 20 0 122 55-140 0 16.74 1.0 20 0 70-125 0 Trichloroethene 83.7 Vinyl chloride 14.13 20 0 0 1.0 70.6 50-145 59.71 0 0 Xylenes, Total 3.0 60 99.5 75-130 22,74 Surr: 1,2-Dichloroethane-d4 0 20 0 114 70-120 0 20.43 0 Surr: 4-Bromofluorobenzene 0 20 102 75-120 0 Surr: Dibromofluoromethane 20.32 0 0 0 20 102 85-115 24,41 0 0 0 S Surr: Toluene-d8 20 122 85-120

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

Batch ID: R131534 Instrument ID VMS8 Method: SW8260 MS Sample ID: 13111249-07A MS Units: µg/L Analysis Date: 11/30/2013 08:57 AM Run ID: VMS8_131129B Client ID: SeqNo: 2561384 Prep Date: DF:1 RPD Ref RPD SPK Ref Control Value Limit %REC Limit Value Result PQL SPK Val %RPD Qual Analyte 19.05 0 1,1,1-Trichloroethane 1.0 20 0 95.2 65-130 15.99 1,1,2,2-Tetrachloroethane 1.0 20 0 80 65-130 0 1,1,2-Trichloroethane 16.71 1.0 20 0 83.6 75-125 0 18.04 1,1-Dichloroethane 1.0 20 0 90.2 70-135 0 1,1-Dichloroethene 19.19 1.0 20 0 96 70-130 0 1,2-Dichloroethane 17.43 1.0 20 0 87.2 70-130 0 1,2-Dichloropropane 16.9 2.0 20 0 84.5 75-125 0 16.94 2-Butanone 5.0 20 0 84.7 30-150 0 2-Hexanone 16 5.0 20 0 80 55-130 0 4-Methyl-2-pentano⊓e 21.78 5.0 20 0 109 60-135 0 Acetone 22.45 20 20 0 40-140 0 112 Benzene 17.71 1.0 20 0 88.6 80-120 0 Bromodichloromethane 17.38 1.0 20 0 86.9 75-120 0 Bromoform 13.83 1.0 20 0 69.2 70-130 0 S 21.14 20 0 0 Bromomethane 1.0 106 30-145 Carbon disulfide 20.32 2.5 20 0 102 35-165 0 Carbon tetrachloride 18.84 1.0 20 0 94.2 65-140 0 18.04 20 0 0 Chlorobenzene 1.0 90.2 80-120 27.75 Chloroethane 1.0 20 0 139 60-135 0 S Chloroform 18.84 1.0 0 0 20 94.2 65-135 Chloromethane 16.33 1.0 20 0 70-125 0 81.6 17.83 1.0 20 0 70-125 0 cis-1,2-Dichloroethene 89.2 16.86 cis-1,3-Dichloropropene 1.0 20 0 84.3 70-130 0 16.62 Dibromochloromethane 1.0 20 0 83.1 60-135 0 17.98 0 Ethylbenzene 1.0 20 89.9 75-125 0 35.91 m,p-Xylene 2.0 40 0 89.8 75-130 D Methylene chloride 17.49 5.0 20 0 87.4 55-140 0 18.34 1.0 20 0 91.7 80-120 0 o-Xylene 18.04 0 1.0 20 90.2 65-135 0 Styrene 17.22 Tetrachloroethene 2.0 20 0 45-150 0 18.13 0 Toluene 1.0 20 90.6 75-120 0 18.59 1.0 20 0 0 93 60-140 trans-1,2-Dichloroethene 17.03 20 0 0 trans-1,3-Dichloropropene 1.0 85.2 55-140 Trichloroethene 17.26 1.0 20 0 86.3 70-125 0 15.95 Vinyl chloride 1.0 20 0 79.8 50-145 0 54.25 0 Xylenes, Total 3.0 60 90.4 75-130 0 20.61 Surr: 1,2-Dichloroethane-d4 0 20 0 103 70-120 0 Surr: 4-Bromofluorobenzene 20.09 0 20 0 0 100 75-120 19.99 Surr: Dibromofluoromethane 0 20 0 85-115 0 100 Surr: Toluene-d8 20.31 0 20 0 0 102 85-120

Triad Engineering, Inc.

Work Order:

13111254

Project:

Johns Manville-Riverside Parcels

MSD Samı	ole ID: 13111249-07A MSD				ι	Jnits: µg/L		Analysi	s Date: 11	/30/2013	09:21 AN
Client ID:	Run I	D: VMS8_	131129B		Se	qNo: 25 6′	1385	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	18.93	1.0	20		0	94.6	65-130	19.05	0.632	30	
1,1,2,2-Tetrachloroethane	16.89	1.0	20		0	84.4	65-130	15.99	5.47	30	-
1,1,2-Trichloroethane	17.13	1.0	20		0	85.6	75-125	16.71	2.48	30	
1,1-Dichloroethane	18.19	1.0	20		0	91	70-135	18.04	0.828	30	
1.1-Dichloroethane	18.34	1.0	20		0	91.7	70-130	19.19	4.53	30	
1.2-Dichloroethane	17.71	1.0	20		0	88.6	70-130	17.43	1.59	30	
1,2-Dichloropropane	16.62	2.0	20		0	83.1	75-135	16.9	1.67	30	
2-Butanone	18.18	5.0	20		0	90.9	30-150	16.94	7.06	30	
2-Hexanone	17.47	5.0	20		0	87.4	55-130	16	8.78	30	
4-Methyl-2-pentanone	24.4	5.0	20		0	122	60-135	21.78	11.3	30	
Acetone	23.8	20	20		0	119	40-140	22.45	5.84	30	
Benzene	17.39	1.0	20		0	87	80-120	17.71	1.82	30	
Bromodichloromethane	17.18	1.0	20		0	85.9	75-120	17.38	1.16	30	
Bromoform	14.74	1.0	20		0	73.7	70-120	13.83	6.37	30	
Bromomethane	22.96	1.0	20		0	115	30-145	21.14	8.25	30	
Carbon disulfide	20.59	2.5	20		0	103	3 5-165	20.32	1,32	30	
Carbon tetrachloride	18.69	1.0	20		0	93.4	65-140	18.84	0.799	30	
Chlorobenzene	17,71	1.0	20		0	88.6	80-120	18.04	1.85	30	
Chloroethane	22.2	1.0	20		0	111	60-135	27.75	22.2	30	
Chloroform	18.96	1.0	20		0	94.8	65-135	18.84	0.635	30	
Chloromethane	17.08	1.0	20		0	85.4	70-125	16.33	4.49	30	
cis-1,2-Dichloroethene	18.03	1.0	20	······································	0	90.2	70-125	17.83	1.12	30	
cis-1,3-Dichloropropene	16.45	1.0	20		0	82.2	70-130	16.86	2.46	30	
Dibromochloromethane	17.25	1.0	20		0	86.2	60-135	16.62	3.72	30	
Ethylbenzene	17.79	1.0	20		0	89	75-125	17.98	1.06	30	
m,p-Xylene	35.53	2.0	40		0	88.8	75-130	35.91	1.06	30	
Methylene chloride	17.27	5.0	20		0	86.4	55-140	17.49	1.27	30	
o-Xylene	18.08	1.0	20		0	90.4	80-120	18.34	1.43	30	
Styrene	17,75	1.0	20		0	88.8	65-135	18.04	1.62	30	
Tetrachloroethene	17.45	2,0	20		0	87.2	45-1 5 0	17.22	1.33	30	
Toluene	18.06	1.0	20		0	90.3	75-120	18.13	0.387	30	
trans-1,2-Dichloroethene	18.68	1.0	20		0	93.4	60-140	18.59	0.483	30	
trans-1,3-Dichloropropene	16.93	1.0	20		0	84.6	55-140	17.03	0.589	30	
Trichloroethene	17.32	1.0	20		0	86.6	70-125	17.26	0.347	30	
Vinyl chloride	15.99	1.0	20		0	80	50-145	15.95	0.25	30	
Xylenes, Total	53.61	3.0	60		0	89.4	75-130	54.25	1.19	30	
Surr: 1,2-Dichloroethane	d4 20.73	0	20		0	104	70-120	20.61	0.581	30	
Surr: 4-Bromofluorobenze		0	20		0	101	75-120	20.09	0.546	30	
Surr: Dibromofluorometh		0	20		0	103	85-115	19.99	2.81	30	
Surr: Toluene-d8	20.47	0	20		0	102	85-120	20.31	0.785	30	

Triad Engineering, Inc.

Work Order:

13111254

Project: Johns Manville-Riverside Parcels Batch ID: R131352 Instrument ID MOIST Method: A2540 G MBLK Sample ID: WBLKS-R131352 Units: % of sample Analysis Date: 11/26/2013 12:25 PM Run ID: MOIST_131126B SeqNo:2558915 Client ID: Prep Date: DF: 1 RPD SPK Ref Control RPD Ref Value Limit Value Limit Analyte Result PQL SPK Val %REC %RPD Qual Moisture ND 0.050 LCS Sample ID: LCS-R131352 Units: % of sample Analysis Date: 11/26/2013 12:25 PM Run ID: MOIST_131126B Client ID: SeqNo:2558911 Prep Date: DF: 1 RPD SPK Ref RPD Ref Control Limit Value Value Result PQL SPK Val %REC Limit %RPD Qual Analyte 99.99 0 Moisture 0.050 100 100 99.5-100.5 0 DUP Sample ID: 13111254-01C DUP Units: % of sample Analysis Date: 11/26/2013 12:25 PM Client ID: SS-2 Run ID: MOIST_131126B SeqNo:2558887 Prep Date: DF: 1 RPD SPK Ref Control RPD Ref Value Value Limit Limit Analyte Result PQL SPK Val %REC %RPD Qual 14.37 0 Moisture 0.050 0 0 0-0 17.15 17.6 20 Sample ID: 13111254-09C DUP Analysis Date: 11/26/2013 12:25 PM Units: % of sample Client ID: SS-11 Run ID: MOIST_131126B SeqNo:2558896 Prep Date: DF: 1 RPD SPK Ref RPD Ref Control Value Value Limit Result SPK Val %REC Limit %RPD Qual Analyte PQL 11.08 Moisture 0.050 0 0 0-0 11.03 0.452 0 **2**0 The following samples were analyzed in this batch: 13111254-01C 13111254-02C 13111254-03C 13111254-04C 13111254-05C 13111254-06C 13111254-07C 13111254-08C 13111254-09C 13111254-10C 13111254-11C 13111254-12C 13111254-13C 13111254-15C 13111254-14C

13111254-16C

13111254-19C

13111254-17C

13111254-20C

13111254-18C

Triad Engineering, Inc.

Work Order:

13111254

Moisture

Project: Johns Manville-Riverside Parcels Instrument ID MOIST Batch ID: R131395 Method: A2540 G MBLK Sample ID: WBLKS-R131395 Units: % of sample Analysis Date: 11/26/2013 03:00 PM Client ID: Run ID: MOIST_131126E SeqNo:2558049 Prep Date: DF: 1 RPD SPK Ref Control RPD Ref Value Limit Value Limit SPK Val %REC %RPD Analyte Result PQL Qual ND Moisture 0.050 DUP Sample ID: 13111249-04C DUP Units: % of sample Analysis Date: 11/26/2013 03:00 PM Run ID: MOIST_131126E Client ID: SeqNo:2558019 Prep Date: DF: 1 SPK Ref RPD Ref **RPD** Control Value Limit Value Limit Analyte Result PQL SPK Val %REC %RPD Qual 16.2 0 0-0 Moisture 0.050 0 0 15.85 2.18 20 DUP Sample ID: 13111254-21C DUP Analysis Date: 11/26/2013 03:00 PM Units:% of sample Client ID: SB-8 Run ID: MOIST_131126E SeqNo:2558024 Prep Date: DF:1 RPD SPK Ref RPD Ref Control Value Limit Value Limit Result PQL SPK Val %REC %RPD Qual Analyte 18.85

0.050

The following samples were analyzed in this batch:

13111254-21C	13111254-22C	13111254-23C	
13111254-24C	13111254-25C	13111254-26C	
13111254-27C			

0

0-0

19.57

3.75

20

0

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262

Chain of Custody Form

Page 2 of 4

ALS Environmental 3352 128th Avenue Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185

Constraint Information Project Hamil Properties Project Hamil Project Information Project Hamil Project Information Project Hamil Project Information						ALS Project Manager.	Manager:	100 May 200			ALS W	ALS Work Order #:	 *	13111254	54	
Project Name Proj	Customer	Information		Projec	t Informat	lòn			Pa	amete	/Metho	d Reg	lest fol	r Analy	SIS	
Princip Chiefe Prin	Purchase Order 04-13	-0402	Project Nan	M s uyor au	anville-Rve	rside Parce	S		C by 826	0.						
Chief Report From Final Engineering, Inc. Chief Report	Work Order		Project Numb	ier 04-13-04	02			.::::	H 8270 S	ılm			-			
Chipselectic Section Chipselectic Chipselec	Company Name Triad	Engineering, Inc.	Bill To Compa	1⊢	gineering, Ir	1¢.			RA8 Me	tals	,					
Chicklessic Chicklessic Chicklessic Chickless	Send Report To Matth	ew Wright	Invoice Att		emble			Ď								
Priorie Successive City/Statistic Priorie Successive A A B C C C C C C C C C	Address 4980	Teays Valley Rd.	Addre	219 Harti	nian Runi Ro			шш			!					
Principal State Principal	City/State/Zip Scott	Depot, WV 25560	City/State/Z	ip Morgant	own, WV 26	505		Ø								
Second Pair Pair Sample Description Date Trine Historix Prins	Phone 304-7	55-0721	Pho	ne 304-296-	2562			<u></u>								
Signature Date Trime International Date Trime Date Da	Fax 304-7	55-1880		ax 304-296-	8739			1								
SS-2 Saingle Description	e-Mail Address mwr.	ght@triadeng.com		jstemple	@triadeng.	com		P								
SS-2 11/19/2013 1300 soil 7,6,8 5		le Description	Date	Time	11111	Pres. Key Numbers	# Hotiles	٧	В			Ŀ	9			
SS-4 11/19/2013 1500 soil 76,8 5 x x x x x x x x x			11/19/2013	1300		7,6,8	5	×	×.	×						
SS-5	13.5		11/19/2013	1500	lios	7,6,8	5	×	×	×						-
SS-6 SS-6 11/20/2013 1520 Soil 76.8 5 x x x x x x x x x			11/19/2013	1400	soil	7,6,8	.5	×	×	×						
SS-7 SS-8 SS-9 SS-10 S			11/20/2013	1520	lios	7,6,8	5	·×	*	×						
SS-8 SS-8 I1/20/2013 I400 Soil 7,6,8 5 x x x x SS-9 I1/20/2013 I200 Soil 7,6,8 5 x x x x x SS-10 I1/19/2013 I130 Soil 7,6,8 5 x x x x x x X X X X	1:11		11/19/2013	1600	lios	7,6,8	70	×	*	×						
SS-9 Sol			11/20/2013	1400	soil	7,6,8	5	×	×	×	-				1	_
SS-10 SS-10 Soil 7,6,8 S X X X X X X X X X	7. SS-9	ANTI-PROPERTY. III.	11/20/2013	1200	soil	7,6,8	. 5	×	M	×						-
SS-11 SS-12 SS-1			11/20/2013	1430	lios	7,6,8	5	×	×	×						
SS-12 Shipment Method: Required Tornaround Time: (Chlerk Box) Shipment Method: Required Tornaround Time: (Chlerk Box) Shipment Method:	$\pm :::$		11/19/2013	1000	soil	7,6,8	5	×	×	×						+
			11/19/2013		80	7,6,8	5	×		×				_		_
1 22 3 1 1 22 3 1 22 3 1 22 3 1 22 3 1 22 3 1 22 3 1 22 3 1 22 3 1 22 3 3 4 2504 4 - NaOH \$5 - Na + ISO ₄ \$7 - Other \$8 - 4^nC \$7 - Other \$7	gler(s): Please P	Sign Africa	rgino.	nent Method		ired Turnar 10 Wk Days	ound Time: swit Days	(Check B ∐3wk.□	ox) ays] 2 Wk D	ı U	24 (four	Rest	end siln	Dale	
Time: Received by (Laboratory): Date: Time: Received by (Laboratory): ALS Cooling of by (Laboratory): Date: Time: Time: Cinecked by (Laboratory): Time: Time: Cinecked by (Laboratory): Date: Time: Time: Cinecked by (Laboratory): Date: Time: Cinecked by (Laboratory): Date: Time: Cinecked by (Laboratory):		124	330	eceived by:			Date:	Time:	Notes:		5//8	laus		B-(3,2%
1. HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaHSO ₄ 7-Other 8-4°C		12/13	77.5	eceived by (La	boratory):	1 6	1 2	Time:	ALS Co			Č Packa J Level II:	ge: (Ch Standard	eck Box	Below) evel III: Ra	w Data
4-HG 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaHSO ₄ 7-Other 8-4°C	Logged by (Laboratory):	Date:) July 1	hecked by Kal	ooratory):						~	TRRP LR	C SW846 M	ethods/CLF	RRP Level 1	è
1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH 5-Na ₂ S ₂ O ₃ 6-NaHSO ₄ 7-Other 8-4°C	Idwar / yee	2 1/29/12	02:21									Other:				
	Preservative Key: 1-	2-HNO ₃	:		Va ₂ S ₂ O ₃	6-NaHS			-4°C	Note:	Any cha	nges mus	it be mad m submi	le in writi Hed fo∧	ng once	sample

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262 5

Chain of Custody Form

ō Page 3

Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185 ALS Environmental 3352 128th Avenue

					ALS Project Manager:	t Manager:				ALS	ALS Work Order #:	er #:	15	3111254	
	Customer Information		Projec	Project Information	tion			::::	iramet	er/Met	Parameter/Method Request for Analysis	iuest fo	r.Analy	sis	
1	Purchase Order 04-13-0402	Project Name	_	ohn's Manville-Rverside Parcels	rside Parce	<u>8</u>	Ä	VOC by 8260	90						
	Work Order	Project Number	er 04-13-0402	02			B P/	PAH 8270 SIM	SIM						-
ျပ	Company Name Triad Engineering, Inc.	Bill To Company	1-	rlad Engineering, Inc.	nc.		C.R.	RCRA 8 Metals	etals						
9	Send Report To Matthew Wright	hvoice Attn.	n. Jamie Stemple	emple			ū								
	Address 4980 Teays Valley Rd.	Addless		219 Hartınarı Run Rd.	-j		111 (14								
	Discontinue Cont Dance MW PERCO	Chyclesolzin Morganian WV 26505	in Moroani	Own WW 26	5505		c		-		-				
	City/State/Lip Scott Depot, WV Z5560	Citylotate	ily intoligant	OWII, WY AU	2000	-) . <u>.</u>			1					
	Phone 304-755-0721	Pho	Phone 304-296-2562	2562			I								
	Fax 304-755-1880	L	Fax 304-296-8739	8739				-							
	e-Mail Address mwright@triadeng.com		istemple	istemple@triadeng.com	com		3 3	i							
o Z	Sample Description	Date	Time	Matrix	Pres. Key Numbers	# Boilles	Ą	a	Ċ.	E C		ල		7	Hold
	SS-13	11/19/2013	1100	soil	7,6,8	5	*	×	×						
7	SS-14	11/20/2013	1020	lios	7,6,8	5	×	×	×						
	SS-15	11/20/2013	1100	lios	7,6,8	5	×	×	*						
4	58-16	11/20/2013	1500	soil	7,6,8	5	*	×	×						
ις	\$13-2	11/19/2013	1300	lios	7,6,8	5	×	×	×						
19	SB-3	11/20/2013	930	lios	7,6,8	· S	×	×	×		-				
,	SB-4	11/19/2013	1500	soil	7,6,8	5	×	×	×		1				
∞	SB-5	11/19/2013	1400	soil	7,6,8	5	×	×	×				-		+
ĵ.	S.D-6	11/20/2013	1535	soil	7,6,8	5	×	×.	×	-					
10	SB-7	11/19/2013	1600	S	7,6,8	5	×	×	×		_			_	_
Samp	plar(s): Please Print & Sign	Shipment	nent Method:		uired Tufna 10 WR Days [Required Turnaround Time: (Chebk Box)	(Ghetk Box) [_]3 Wk Dáys	80x) _{26/8}	Othe] 24 (bur	77. 8	Results Due Date	Dalle.	
Rellin	Joined by Dale	Time: Re	Received by:	,	1	Date:	Time:	Notes:				(2	2,0'6
\sum_{i}	12/11 By La La	CE:51 21						Recid	3	(zw. 13	540	Ž	DX		i
Refin	nuished by	Time:	Received by (Laboratory):	boratory):	7	Date: 	Time:	ALS Cooler ID		Cooler	OC Package: (Check Box Below)	C Package: (Check	eck Box	x Below) Level III: R	Raw Data
Louge	Louned by (Laboratory): Date:	Thue: Ct	Checked by (LA	Boratory	2/207	11/1/11	025	S.		(^	TRRP LRC	5		TRRP Level IV	2
7		7	7			-					Level I	Level IV: SW846 Methods/CLP Ilka	dethods/CL	p IIka	
	Mara Mar 1112413	17.20									Other:				
Pres	Preservative Key: 1-HCl 2-HNO ₃ 3-F	3-H2SO4 4-NaOH		5-Na ₂ S ₂ O ₃	6-NaHSO4	O ₄ 7-Other		8-4°C	Note	: Any el	Note: Any changes must be made in writing once samples	ist be mad	Je in writ	ing once	sambles
		Copyright 2007 by ALS Environmental	ironmental			- Architecture			alic	5	III IISIAC O	none man		5	

Copyright 2007 by ALS Environmental

ALS Environmental 1740 Union Carbide Drive So. Charleston, WV 25303 (Tel) 304.356.3168 (Fax) 304.205.6262 \Box

Chain of Custody Form

of Page 4

Holland, Michigan 49424 (Tel) 616.399.6070 (Fax) 616.399.6185 ALS Environmental 3352 128th Avenue

				ALS Project Manager:	Manager:				ALS	ALS Work Order #:	der #:	131	311254		
Customer Information		Projec	Project Information	tion			P	arame	er/Met	Parameter/Method Request for Analysis	questif	or Ana	lysis		
Furchase Order 04-13-0402	Project Name		lanville-Rve	John's Manville-Rverside Parcels	ilš	γ	VOC by 8260	997							
Work Order	Project Number	per 04-13-0402	02			В	PAH 8270 SIM	SIM							
Company Name Triad Engineering, Inc.	Bill To Company		Triad Engineering, Inc.	nc.	-	O R	RCRA 8 Metals	etals	,						
Send Report To Matthew Wright	Invoice Attn.	-	emple				CRA8 N	etals (d	issolved	RCRA 8 Métals (dissolved, field filtered)	(bered)				
Address 1980 Teays Valley Rd.	Addless		219 Hartman Run Rd.	d.		ш									
7.		1				Ľ.									
City/State/Zip Scott Depot, WV 25560	Crty/State/Zlp		Morgantown, WV 26505	505	=	Ø									
Phone 304-755-0721	Phone	ne 304-296-2562	2562	-		Ξ									
Fax 304-755-1880		Fax 304-296-8739	8739			<u> </u>		-							
e-Mail Address unwright@triadeng.com		istemple	istemple@triadeng.com	com											
No Sample Description	Date	Time	Matrix	Pres Key Numbers	#Bbilles	٧	œ	U	n	П Г	Ø	I		Ě	Hold
T SB-8	11/20/2013	1400	lios	7,6,8	5	×	×	×							
2 SB-9	11/20/2013	1200	lios	7,6,8	5	×	×	×							
3 SB-10	11/20/2013	1430	soil	7,6,8	5	×	*	×							İ
4 SB-11	11/19/2013	1000	soil	7,6,8	5	×	4 ×	*							
\$ SB-13	11/19/2013	1100	lios	7,6,8	5	×	×	×				į			Ī
6 SB-15	11/20/2013	1100	lios	7,6,8	5	×	-×	:×	<u> </u>						
* SB-16	11/20/2013	1500	soil	7,6,8	5	×	×	*							
8 TMW-1	11/21/2013	0945	water	1,2,8	9	×	×		×						1
9 IMW-3	11/21/2013	1130	waier	1,2,8	. 9	X	·×	-	×					-	Ī
10 -724 Pas-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) 	:		() 		_						_	ŀ
Sampler(s). Please Print & Sign	Shipr	Shipment Method		Required Turnar	Required Turnaround Time: (Check Box)	(Check Box)	30×)	Dotter		1 54 Hair		Results Due Date	e Date		
Kent ti tosto Truster				_::T			1000		- 1				C		
Reinfugled by:		eceived by:		A la	coate.		00.1		boch	In truc	Ų V	` .	\propto	۶ 	i A
Relinduished by:	Time:	Received by (Lat	(Laboratory):		Date:	Time:	ol s Coole		Cooler			heck Bo	(Check Box Below)		
~			A. H. A.	74	E) frd"	1326	2		Temp	ا Level آ			Level III: Raw Data	Raw Data	e
Logged by (Laboratory):	Time:	Checked by Laboratory)	oratory):						أبرا	TRRP LRC	LRC		TRRP Level IV	۸I ا	
14	***************************************									🔲 Level 1	Level IV: SW846 Methods/CLP like	Methods/(LP like		
14ther 14th 11/24/3	1,77							_		Other:					
Preservative Key: 1-HCl 2-HNO ₃ 3-H ₂ SO ₄	SO4 4-NaOF		5-Na ₂ S ₂ O ₃	6-NaHSO ₄	ر 7-Other		8-4°C	Note	: Auy d	Note: Any changes must be made in writing once samples and COC Form have been submitted to At S.	ust be ma	ide in wr virted to	iting one	e sample	les
								5) 			1110			

Copyright 2007 by ALS Environmental

ALS Group USA, Corp

Sample Receipt Checklist

Client Name:	TRIADENGINEER				Date/Time	Receive	ed: <u>22</u>	-Nov-1	3 <u>15:46</u>		
Work Order:	13111254				Received b	oy:	<u>JA</u>	<u>.s</u>			
Checklist comp	pleted by Lanet Smith esignature	2	5-Nov-10	3_	Reviewed by:	Second eSign	abure	uer		707-1	27-Nov-13
Matrices: Carrier name:	Soil and Water Courier	i				99.9				!	Date
Shipping conta	iner/cooler in good condition?		Yes	\checkmark	No 🗆	No	ot Present				
Custody seals	intact on shipping container/coole	er?	Yes		No □	No	ot Present	~			
Custody seals	intact on sample bottles?		Yes	~	No □	No	ot Present				
Chain of custo	dy present?		Yes	√	No □						
Chain of custor	dy signed when relinquished and	received?	Yes	V	No 🗆						
Chain of custor	dy agrees with sample labels?		Yes	V	No 🗆						
Samples in pro	per container/bottle?		Yes	V	No 🗔						
Sample contair	ners intact?		Yes	Y	No 🗔						
Sufficient samp	ple volume for indicated test?		Yes	~	No 🗔						
All samples rec	ceived within holding time?		Yes	✓	No 🗀						
Container/Tem	p Blank temperature in compliance	e?	Yes	V	No 🗔						
Sample(s) rece Temperature(s	vived on ice?)/Thermometer(s):		Yes 3.0C	✓:	No _		<u>IR</u>				
Cooler(s)/Kit(s)	:				- TANFINE						
Date/Time sam	nple(s) sent to storage:								FF. 22		
	als have zero headspace?		Yeş		No ∐ —		A vials sub	mitted			
	eptable upon receipt?		Yes	~	No 🗔	N/A					
pH adjusted? pH adjusted by			Yes	Ľ	No 🗔	N/A					
Login Notes:	Received at ALS Holland 11,	/26/13 10:45 AM - 3	3 <u>.2 c</u>								
		·	····· — —	- — -		- — —					
Client Contacte	d:	Date Contacted:			Person	Contact	ted:				
Contacted By:		Regarding:									
Comments:											
CorrectiveActio	n;					×·					
									SI	RC Pac	e 1 of 1